Low Mach, variable density

Equations

  • mixture fraction $\xi$
  • equation of state
  • continuity
  • momentum

Variables: $\xi$, $\rho$, $u$, $P$

$$ \begin{align*} \frac{\partial\rho \xi }{\partial t}& = \underbrace{-\nabla\cdot\rho u \xi +\nabla\cdot(\rho D\nabla\xi)}{F} \ \rho &= G(\xi) \ \frac{\partial\rho}{\partial t} &= -\nabla\cdot \rho u \ \frac{\partial\rho u }{\partial t}& = \underbrace{-\nabla\cdot\rho u u -\nabla\cdot\tau}{H} -\nabla P \ \end{align*} $$

Discretize in time, advance $\rho$, $\xi$

$$ \left. \begin{align*} & (\rho\xi)^{n+1} = (\rho\xi)^n + \Delta tF^n \ &\rho^{n+1} = G(\xi^{n+1}) \end{align*} \right}\text{solve for }\rho^{n+1}, \xi^{n+1} $$

Pressure equation

  • Discretize in time, continuity, momentum:

$$ \begin{align*} & \rho^{n+1} = \rho^n - \Delta t\nabla\cdot(\rho u)^{n+1} \ & (\rho u)^{n+1} = (\rho u)^n + \Delta tH^n - \Delta t\nabla P \end{align*} $$

Take the divergence of the momentum equation and insert into the continuity equation and solve for the pressure term:

$$ \nabla^2P = \frac{1}{\Delta t}\nabla\cdot(\rho u)^n + \nabla\cdot H^n + \frac{1}{\Delta t^2}(\rho^{n+1}-\rho^n) $$

Summary

  • Solve the following two equations for $\rho^{n+1}, \xi^{n+1}$,

$$ \begin{align*} & (\rho\xi)^{n+1} = (\rho\xi)^n + \Delta tF^n \ &\rho^{n+1} = G(\xi^{n+1}) \end{align*} $$

  • Solve the pressure equation for $P$,

$$ \nabla^2P = \frac{1}{\Delta t}\nabla\cdot(\rho u)^n + \nabla\cdot H^n + \frac{1}{\Delta t^2}(\rho^{n+1}-\rho^n) $$

  • Advance the momentum equation to get $(\rho u)^{n+1}$

    $$ (\rho u)^{n+1} = (\rho u)^n + \Delta tH^n - \Delta t\nabla P $$

    • Solve for $u^{n+1} = (\rho u)^{n+1}/\rho^{n+1}$.