Math is inline or display:
- inline: surround with single $:
$y = f(x)$
yeilds $y=f(x)$ - display: put the equation on its own line and surround with double $$:
$$y=f(x)$$
gives
$$y=f(x)$$
Greek
\alpha, \beta, \gamma
gives $\alpha$, $\beta$, $\gamma$- Uppercase:
\Gamma
gives $\Gamma$
Superscripts use ^
y^2
gives $y^2$y^2x
gives $y^2x$y^{2x}
gives $y^{2x}$
Subscripts use _
y_2
gives $y_2$y_2x
gives $y_2x$y_{2x}
gives $y_{2x}$
Fractions
\frac{numerator}{denominator}
\alpha\frac{d^2y}{dx^2}
$$\alpha\frac{d^2y}{dx^2}$$
Sums and integrals
\sum_{i=0}^{n+1} x_i
$$\sum_{i=0}^{n+1}x_i$$\int_{T_r}^{T} c_p(T)dT
$$\int_{T_r}^{T} c_p(T)dT$$
Special functions
\sin(x), \exp(x), \ln(x)
give $\sin(x)$, $\exp(x)$, $\ln(x)$.- Note the difference with
sin(x), exp(x), ln(x)
give $sin(x)$, $exp(x)$, $ln(x)$.
- Note the difference with
Text in math
- Use
T_{\text{max}}
notT_{max}
- $T_{\text{max}}$ versus $T_{max}$
Special symbols
\partial
\alpha\frac{\partial^2y}{\partial x^2}
$$\alpha\frac{\partial^2y}{\partial x^2}$$\nabla
gives $\nabla$\approx
gives $\approx$\equiv
gives $\equiv$\rightarrow
gives $\rightarrow$\rightleftharpoons
gives $\rightleftharpoons$\infty
gives $\infty$\le
gives $\le$\ge
gives $\ge$\langle
gives $\langle$\rangle
gives $\rangle$\times
gives $\times$a\cdot b
gives $a\cdot b$\vec{v}
gives $\vec{v}$\hat{v}
gives $\hat{v}$\tilde{v}
gives $\tilde{v}$\widetilde{vkjfd}
gives $\widetilde{vkjfd}$\dot{m}
gives $\dot{m}$m^\prime
gives $m^\prime$
Bigness
Compare:
(\frac{a}{b})
gives $$(\frac{a}{b})$$\left(\frac{a}{b}\right)
gives $$\left(\frac{a}{b}\right)$$- use
\left( \right)
,\left[ \right]
,\left\{ \right\}
,\left< \right>
,\left| \right|
- The following will skip the leading |,
\left.\frac{df}{dx}\right|_{x=2}
$$\left.\frac{df}{dx}\right|_{x=2}$$
Spaces
- use
\,
\:
\;
\!
\quad
\qquad
to add extra horizontal space- but really,
\,
is usually fine, sometimes more than one, like\,\,
$$a,b$$ $$a:b$$ $$a;b$$ $$a!b$$ $$a\quad b$$ $$a\qquad b$$
- but really,
\phantom{xyz}
will put space forxyz
(or whatever), but without displaying thexyz
a\phantom{xxxxxxxxxxxx}b
$$a\phantom{xxxxxxxxxxxx}b$$
Align equations
- Write equations between
\begin{align}
and\end{align}
- Use
&
as an alignment character - And two backslashes
\\
for line breaks - Include \nonumber on the line if you don’t want the equation to be numbered
$$
\begin{align}
a + b + c &= d, \\
e &= f
\end{align}
$$
$$ \begin{align} a + b + c &= d, \nonumber \\ e &= f \nonumber \end{align} $$
Matrix
- See below.
- Can use
{matrix}
or{bmatrix}
or{pmatrix}
or{Bmatrix}
or{vmatrix}
or{Vmatrix}
for plain, brackets, parentheses, curly brackets, vertical lines, double vertical lines, respectively.
$$
A =
\begin{bmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3} \\
\end{bmatrix}
$$
$$ A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ \end{bmatrix} $$
Fancy pants
- underbrace
\underbrace{\frac{\Delta t D}{\Delta x^2}}_{d}
$$\underbrace{\frac{\Delta t D}{\Delta x^2}}_{d}$$
- cases
- also uses
&
as alignment character and\\
for line breaks
- also uses
$$
T =
\begin{cases}
-P, &\text{for } P < -2, \\
1-\frac{P}{2}, &\text{for } -2\le P\le 2, \\
0, &\text{for } P > 2.
\end{cases}
$$gg
$$ T = \begin{cases} -P, &\text{for } P < -2, \\ 1-\frac{P}{2}, &\text{for } -2\le P\le 2, \\ 0, &\text{for } P > 2. \end{cases} $$
Color
\color{blue}h_0 + \int_{T_r}^{T} c_p(T)dT
$$\color{blue}h_0 + \int_{T_r}^{T} c_p(T)dT$$
{\color{blue}h_0} + \int_{T_r}^{T} c_p(T)dT
$${\color{blue}h_0} + \int_{T_r}^{T} c_p(T)dT$$