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Hierarchical Parcel Swapping (HiPS) is a multiscale stochastic model of tur-
bulent mixing based on a binary tree. Length scales decrease geometrically
with increasing tree level, and corresponding time scales follow inertial range
scaling. Turbulent eddies are represented by swapping subtrees. Lowest-level
swaps change fluid parcel pairings, with new pairings instantly mixed. This
formulation suitable for unity Schmidt number Sc, is extended to nonunity Sc.
For high Sc, the tree is extended to the Batchelor level, assigning the same time
scale (governing the rate of swap occurrences) to the added levels as the time scale
at the base of the Sc = 3 tree. For low Sc, a swap at the Obukhov-Corrsin level
mixes all parcels within corresponding subtrees. Well-defined model analogs of
turbulent diffusivity and mean scalar-variance production and dissipation rates
are identified. Simulations idealizing stationary homogeneous turbulence with
an imposed scalar gradient reproduce various statistical properties of viscous-
range and inertial-range pair dispersion and of the scalar power spectrum in the
inertial-advective, inertial-diffusive, and viscous-advective regimes. The viscous-
range probability density functions of pair separation and scalar dissipation agree
with applicable theory, including the stretched-exponential tail shape associated
with viscous-range scalar intermittency. Previous observation of that tail shape
for Sc = 1, heretofore not modeled or explained, is reproduced. Comparisons to
direct numerical simulation allow evaluation of empirical coefficients, facilitating
quantitative applications. Parcel-pair mixing is a common mixing treatment, e.g.,
in subgrid closures for coarse-grained flow simulation, so HiPS can improve model
physics simply by smarter (yet nearly cost-free) selection of pairs to be mixed.
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1. Introduction

Turbulent mixing processes are critically important in a wide range of applica-
tions. Given their ubiquitous presence, understanding and accurately modeling
these processes is essential. However, this is challenging due to multiple time and
length scales involved. The primary challenge in turbulent flow research is to
develop models that capture the complexity of turbulent mixing processes with
high fidelity while balancing computational efficiency.

Passive scalar mixing has been extensively studied experimentally and com-
putationally; see, for example, reviews by Gotoh & Watanabe (2012), Warhaft
(2000), and Shraiman & Siggia (2000). The mixing of passive scalars with varying
Schmidt number is important for many problems, and accurate understanding
and modeling of their transport is necessary in more complex systems that
include nontrivial source terms, as in aerosol dynamics or reacting flows, such
as combustion (Lignell et al. 2015).

Direct numerical simulation (DNS) provides highly detailed information on
scalar structures and statistics, but at high computational cost with limitations on
the Reynolds and scalar Schmidt numbers that can be considered simultaneously
(Gotoh & Yeung 2013). A range of modeling approaches has been developed
for both theoretical analysis and engineering application. Transport in homoge-
neous isotropic turbulence with a mean scalar gradient has been studied using
several closure models for the scalar variance spectrum and other correlation
functions. For example, Briard & Gomez (2017) studied spectrum scalings for a
wide range of Prandtl (Schmidt) numbers using the eddy-damped quasi-normal
Markovian (EDQNM) model. Bos (2014) studied scalar anisotropy statistics using
the Lagrangian Markovianized field approximation (LMFA) closure model. And
O’Gorman & Pullin (2005) modeled the velocity-scalar cospectrum to measure
the mean scalar flux across scales using the sparse direct-interaction perturbation
(SDIP) closure model, similar to the direct-interaction approximation (DIA)
model of Kraichnan (1959). The linear-eddy model (LEM) of Kerstein (1991b),
also developed by Kalda & Morozenko (2008), solves unsteady, one-dimensional
scalar transport in a physical coordinate with isotropic turbulent advection mod-
eled stochastically through measure-preserving triplet maps. LEM’s successor,
one-dimensional turbulence (ODT), evolves momentum and scalar fields and can
dynamically treat more general boundary-layer flows (Kerstein 2022).

Here, we study turbulent mixing of passive scalars with varying Schmidt
number using the hierarchical parcel-swapping (HiPS) model (Kerstein 2013).
HiPS as originally proposed is a minimal model of mixing in the inertial-range
turbulent cascade. This formulation involves a binary tree structure in which
length scales at successive tree levels decrease geometrically downward from
the apex of the tree and corresponding time scales follow inertial-range scaling.
Physical fluid parcels reside at the base of the tree, such that the tree structure
serves only to prescribe the time advancement of the system state, involving
advection and mixing sub-processes.

Turbulent advection is modeled by introducing randomly sampled eddy events,
each of which swaps the positions of two equal-size subtrees. Each parcel has
the same composition as its nearest neighbor, where there is only one nearest
neighbor in the binary-tree geometry. When a swap causes a composition dif-
ference between nearest neighbors, the two parcels are fully and instantaneously
mixed so as to restore equality of parcel compositions. Only a lowest-level swap,
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in which each subtree is a single parcel, can rearrange parcel pairings and thus
induce micromixing. On this basis, the model induces stepwise scalar length-
scale breakdown leading ultimately to mixing at a prescribed dissipation scale,
nominally the Kolmogorov microscale, thus broadly idealizing the phenomenology
of passive diffusive scalars in inertial-range turbulence.
This formulation implies equivalence of the advective (Kolmogorov) and

mixing-dominated (Batchelor) microscales η and ηb respectively, corresponding to
unity nominal Schmidt number Sc = ν/D, where ν is the kinematic viscosity and
D is the molecular diffusivity. Model extension to nonunity Sc was additionally
proposed (Kerstein 2013) but neither formulated in detail nor implemented.
Instead, applications to date have introduced a model variant in which the

parcel state is the velocity vector v, enabling flow-field simulation rather than
adoption of a prescribed flow parameterization (Kerstein 2014, 2021). In principle,
this approach can incorporate advected scalar fields, and the present study is
in part intended to facilitate that future extension. The main goal, however, is
to provide the first full description and demonstration of a treatment of scalar
mixing, accommodating nonunity Sc, within the minimal flow-parameterization
framework. In this context, the parcel state is simply the scalar value ϕ within the
parcel and turbulent advection is effectuated by means of subtree swaps at rates
based on the prescribed level-dependent time scales, avoiding any specification
or use of an underlying velocity field.
For high Sc, this requires augmentation of the inertial scale range of the binary

tree by appending levels at the bottom of the tree that represent the viscous-
dissipation range. For this purpose, the added levels are all assigned the same time
scale that applies to the bottom of the inertial range (nominally the Kolmogorov
time scale). This corresponds to the physical picture of stepwise length-scale
breakdown viscous-range scalar structure that is induced by the smallest available
eddies, (the Kolmogorov eddies), until this process is balanced by molecular-
diffusive smoothing at the Sc-dependent Batchelor scale. The consequent subtree
swaps at scales well below the Kolmogorov scale, but attributed to Kolmogorov-
scale eddies, constitute the model representation of distant interactions between
flow scales and much smaller scalar structure that govern high-Sc phenomenology.
For low Sc, the Obukhov-Corrsin scale ηoc is analogous to ηb, with ηoc > η, and
accordingly, homogenization across subtrees corresponding to scale ηoc is enforced,
albeit on the basis of Bernoulli trials rather than assured homogenization.
Application of swaps to marked fluid parcels, involving no scalar content

or mixing thereof, is sufficient to time advance parcel-pair separations. The
simplicity of this process allows analytical treatment and consequent determin-
istic advancement of the probability density function (PDF) of pair separation,
complementing information gleaned from Monte-Carlo simulation. For both the
inertial and dissipative regimes, it is shown that the results largely conform to
known and theoretically predicted phenomenology.
Mixing phenomenology is investigated in a configuration that idealizes an

imposed mean scalar gradient in statistically stationary homogeneous turbulence.
Turbulent diffusivity and mean scalar-variance production and dissipation are
shown to have precise mathematical meanings that allow them to be quantified
straightforwardly in nondimensional form. HiPS simulations produce PDFs of
scalar dissipation whose tail shapes conform to predictions of asymptotic analysis.
Scalar power spectra are consistent with known scaling exponents governing
the inertial-advective, inertial-diffusive, and viscous-advective ranges. Conversion
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Figure 1: Schematic illustration of the binary HiPS tree showing nodes (circles)
and fluid parcels (squares).

factors relating HiPS quantities to their physical counterparts are evaluated by
comparing HiPS and direct numerical simulation (DNS) results. These conversion
factors enable quantitative application of HiPS to turbulent mixing processes of
interest. In this context, prospects for mixing/reaction closure of under-resolved
three-dimensional turbulent flow simulations are discussed.

2. HiPS model

2.1. Model representation of flow advancement

HiPS is based on a binary tree structure. Each level of the tree is defined by a
set of nodes. Each node branches into two sub-nodes, continuing to the bottom
of the tree where fluid parcels reside. All fluid properties are defined only in the
fluid parcels at the bottom of the tree, though mixing length and time scales are
stored at the other node levels. In contrast to other hierarchical models, there
are no filtered parcel states at other node levels.
Figure 1 illustrates the basic tree structure. The tree shown has Nt = 5 total

levels. Nodes are indicated by circles and fluid parcels by squares. At the bottom
of the tree, fluid parcels are paired as defined by their connecting node at the
previous level. Tree levels are indexed beginning at zero at the tree apex.
Parcel proximity is defined as the level index of the nearest node connecting two

parcels. In figure 1, parcel pairs (a, b), (a, d), (a, f), and (a, p) have proximities at
node levels 3, 2, 1, and 0, respectively. The proximity between a and either c or
d is the same (at level 2); the proximity between a and any of e through h is the
same (at level 1); and the proximity between a and any of i through p is the same
(at level 0). The ordering of parcels with the same proximity is not relevant. For
example, the tree state in figure 1 is unchanged if the first four parcels a, b, c, d
were written as d, c, a, b, since the parcel proximities on the tree are the same.
Turbulent stirring is modeled by rearranging parcels. This involves a sequence

of eddy events, each of which is implemented as follows:
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(i) A given node of the tree is selected within accessible levels indexed i = 0
to i = Nt − 3; this is the base node.
(ii) A random node (or fluid parcel if i = Nt−3) two levels down along the left

branch emanating from the base node is randomly selected, and another node (or
fluid parcel) is randomly selected two levels down along the right branch. These
are grandchild nodes or parcels.
(iii) The two selected grandchildren of the base node are swapped (along with

their subtrees in the case of swapping nodes).
Note that in step 2, grandchild nodes/parcels are selected two levels below the
base node rather than selecting child nodes/parcels one level below the base
node because the latter does not cause any change. The parcel proximity is what
matters, not the left-to-right ordering suggested in figure 1.
Two swaps are shown in figure 1. The first is with the green checked base

node at level 2. The two gray checked fluid parcels labeled a and d are randomly
selected and swapped. This would change the pairing of parcels: (a, b) → (d, b)
and (c, d) → (c, a). The second swap selects the blue striped base node at level
1. The two orange-striped grandchild nodes are randomly selected, and the two
subtrees emanating from these nodes are swapped. In this case, those subtrees
consist of fluid parcels i and j being swapped with parcels m and n. Note
that in the second case, parcel pairings are not changed, whereas the parcel
pairings are changed in the first case. That is, parcel pairings are only directly
affected when swaps happen at the base node level indexed. Pairing of previously
unpaired parcels is deemed to induce micromixing (implemented as explained
in § 2.4), while mixing at other levels is macromixing that affects the spatial
distribution of parcel states but not the internal compositions of individual fluid
parcels. (This is true of unity Sc scalars. For arbitrary Sc, possibly with multiple
scalars considered, micromixing may occur over more than two parcels. This is
described in later sections.) The macromixing at levels i < Nt − 3 effectively
sweeps the smaller scales while mostly inducing a stepwise breakdown of flow
structure at the scale of the eddy event (base-node level), though it can also lead
to backscattering, forming larger structures from smaller ones, consistent with
the behavior of inertial-range turbulent eddies in real flows.

2.2. Tree length and time scales

Each tree level i is associated with a length scale, Li, and a time scale, τi, with
the largest scales, L0 and τ0, at the apex of the tree. The length scale at each
level is a factor A < 1 of that at the previous level, Li+1 = LiA, which gives

Li = L0A
i. (2.1)

If we consider parcels to occupy fluid volume, then each subtree occupies half
the volume as the tree above, with a length-scale ratio of A. As explained
in Appendix A, the coordinate symmetry appropriate for a given application
determines the associated A value, e.g. for spherical symmetry corresponding to
a radial coordinate r such that volume scales as r3, A = 2−1/3 ≈ 0.8, while for
planar symmetry, A = 1/2 and parcel widths can be treated as uniform and L0

scales as the number of parcels.
The largest eddy event at level i = 0 swaps half the parcels in each of the two

tree halves. This corresponds to a largest eddy size L1 = L0A, which is interpreted
as the integral scale LI .
We define two additional scales. The first, l∗, at level index i∗ and with time
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scale τ ∗, corresponds to a scalar with unity Sc. This scale marks the transition
between the inertial viscous regimes. It is analogous to the Kolmogorov scale η,
and l∗ = Cηη, where Cη is an empirical constant (see § 4).
The other scale is denoted l∗s , and is at level i∗s with time scale τ ∗

s . It is analogous
to the Batchelor scale, ηb, for Sc > 1, or the Obukhov-Corrsin scale, ηoc, for
Sc < 1. The smallest eddy length scale on the tree has a level index of Nt − 3.
For convenience, we also define N∗ as the number of levels corresponding to a

unity Sc scalar. This gives i∗ = N∗−3. Scalars with Sc > 1 correspond to l∗s < l∗,
requiring additional tree levels and thus Nt > N∗.
The transition scale l∗ can be written in terms of a HiPS Reynolds number,

l∗ = L0Re−3/4. (2.2)

Using l∗ = L0A
i∗ = L0A

N∗−3 gives Re = A− 4
3 (N

∗−3), relating Re and N∗.
The level time scales govern the frequency of eddy events, discussed in § 2.3, and

are specified as follows. According to Kolmogorov’s second similarity hypothesis
(Pope 2000), the kinetic energy dissipation rate ϵ is constant in the inertial range
(i ⩽ i∗). Based on ϵ ∼ u2/τ ∼ L2/τ 3, constant ϵ implies τ ∼ L2/3. Using Li =
L0A

i, this gives

τi⩽i∗ = τ0

(
Li

L0

)2/3

= τ0A
2
3 i. (2.3)

The smallest eddies are nominally size η because smaller eddies are suppressed
by viscosity. For scalars with low diffusivity, corresponding to Sc > 1, size-η
eddies down-scale scalar-field structure through compressive-strain effects until
the scalar structure is dissipated at scale ηb. The corresponding dissipation scale
in HiPS is l∗s , thus identifying the scale range [l∗s , l

∗] as the HiPS analog of the
viscous-advective range for Sc > 1.
The scalar phenomenology within this range is order-unity reduction of scalar

spatial structure per Kolmogorov time scale. Notwithstanding the absence of
physical eddies within this scale range, this stepwise scale reduction is emulated
in HiPS by implementing swaps at all scales between l∗ and l∗s , where the time
scale throughout this range is taken as τi>i∗ = τi∗ , giving

τi>i∗ = τ0A
2
3 i

∗
. (2.4)

After each scale-l∗s swap, mixing is implemented, marking the transition from the
viscous-advective regime to the viscous-dissipative regime.
As mentioned in § 1, this models the distant interactions between the smallest

physical eddies and scalar structure at smaller scales within the viscous-advective
range. In addition to capturing high-Sc spatial structure, as shown in § 3, it
gives a physically sound representation of Lagrangian histories, notably the Sc
dependence of elapsed time for scale breakdown from η to ηb (Kerstein 1991a).

2.3. Eddy selection

The procedure for sampling eddy event times and eddy locations at levels and
nodes is given in the following subsections.

2.3.1. Sampling of event times

An eddy rate λi is associated with each level. We expect, on average, one eddy
in time τi at each node of a given level, so the rate at each node is 1/τi, and the
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total rate of level-i events is

λi =
2i

τi
. (2.5)

The total rate of all eddies Λ is the sum of the rates λi on each level.
Turbulent motions are in general correlated in space and time, resulting in

local fluctuations of turbulence intensity that account for observed intermittency.
For simplicity in HiPS, such correlations are ignored, so eddy occurrences are
statistically independent and therefore constitute a Poisson process in time,
devoid of any history effects (although in conjunction with the mixing process,
the scalar field has highly consequential history dependence).
On this basis, the time increments ∆t between successive eddy occurrences

are sampled from an exponential distribution corresponding to a Poisson process
with mean rate Λ,

p(∆t) = Λe−Λ∆t. (2.6)

Here, p(∆t) is the PDF of spacing ∆t between eddy events. The cumulative
distribution function (CDF) is

P (∆t) =

∫ ∆t

0

p(∆t′)d∆t′ = 1− eΛ∆t. (2.7)

Time increments between eddy occurrences are sampled from this CDF as

∆t = − ln(Ur)

Λ
, (2.8)

where Ur ∈ [0, 1] is a uniform random variate.
As explained below, all changes of the system state in the present HiPS

implementation occur at the epochs of the instantaneous eddy events. Therefore
the sequence of sampled time increments ∆t fully specifies the temporal structure
of the advancement. Algorithmically, a HiPS realization is a sequence of imple-
mentations of the state changes prescribed upon the occurrence of the successive
eddy events. Strictly speaking, the ∆t values are not needed to implement
this sequence of state changes and could be generated during post-processing
provided that the system state upon the completion of each event is saved.
This illustrates that the notion of time advancement is a physical interpretation
superimposed on the algorithmic implementation rather than being intrinsic to
that implementation. For statistically stationary flow, single-time statistics are
unaffected by time rescaling implemented by changing Λ, a model feature that
has previously proven to be consequential (Kerstein 2014, 2021). The freedom
to rescale time is invoked in § 3.2.4 to identify the adjustment of the time
development of a transient flow that is needed to match its empirical rate of
development.

2.3.2. Eddy level selection

The selection of the tree level of a sampled eddy event is described below. After
a level is selected, the specific node at that level to which the eddy is attached is
chosen with uniform probability from among the 2i nodes at the level i.
The formulation is designed to capture the full scale range of scalar fluctuations,

ranging from the integral scale to the smaller of l∗ and l∗s . The scale range for
a given scalar depends on Sc. With multiple scalars of varying Sc, the tree will
include levels sufficient to accommodate the scalar with the largest Sc.
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For convenience here, the inertial range l ⩾ l∗ is labeled I, and the viscous
range l < l∗ is labeled V . The eddy rates in the respective ranges are denoted ΛI

or ΛV , and the total rate is Λ = ΛI + ΛV . To determine the region, a uniform
random variate Ur ∈ [0, 1] is selected; if Ur ⩽ ΛI/Λ, region I is selected, otherwise
region V is selected. We then select a particular level in the chosen region.
In the inertial range, the probability of an eddy event at level i is

p(i) =
λi

ΛI

, (2.9)

where ΛI =
∑i∗

i=0 λi. Equations (2.3), (2.5) give λi, and consequently ΛI , as

λi =
2i

τ0A2i/3
, (2.10)

ΛI =
1− (2A−2/3)i

∗+1

τ0(1− 2A−2/3)
. (2.11)

This provides the CDF as

P (i) =
i∑

j=0

λj

ΛI

=
1− (2A−2/3)i+1

1− (2A−2/3)i∗+1
. (2.12)

Finally, i can be sampled as

i =

⌈
log2(1− Ur(1− (2A−2/3)i

∗+1))

1− 2
3
log2 A

− 1

⌉
, (2.13)

where Ur is a uniform random variate on [0,1], (different from previous values).
In the viscous range, the probability of an eddy event at level i is

p(i) =
λi

ΛV

, (2.14)

where ΛV is

ΛV =
Nt−3∑
i=i∗+1

λi =
1

τ ∗ (2
Nt−2 − 2i

∗+1). (2.15)

The CDF is

P (i) =
2i+1 − 2i

∗+1

2Nt−2 − 2i∗+1
, (2.16)

from which i can be sampled, using a uniform random variate Ur ∈ [0, 1], as

i =
⌈
log2

(
Ur(2

Nt−2 − 2i
∗+1) + 2i

∗+1
)
− 1
⌉
. (2.17)

2.4. Micromixing

Micromixing can be implemented either as an instantaneous event triggered by
an eddy event or continuously in time. The former is employed here owing to its
simplicity and efficiency.
l∗s is the scale at which the HiPS analog of molecular diffusivity, as quantified

in Appendix B, balances eddy diffusivity. This corresponds physically to diffusive
spreading of the scalar across a level-i∗s subtree over the time period corresponding
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Figure 2: Schematic of the scalar variance spectra and regimes, where κ = 2π/l
.

to the mean time between eddy events at a given level-i∗s base node. This
balance is approximated as follows. After an eddy at a level-i∗s base node is
implemented, parcels in each of the two subtrees emanating from the base node
are instantaneously mixed to the mean scalar value of the parcels in the given
subtree. The scalar then has a uniform value in each of the two subtrees. A
repetition of the same eddy and subsequent mixing can then impose uniformity
across the two subtrees; but nonuniformity can be reintroduced by a subsequent
level-(i∗s − 1) eddy that replaces one of the two subtrees below the base node.
For future applications, such as combustion, micromixing using mass-weighted

(Favre) averaging of parcel properties may be desired.

2.5. Sc dependence

2.5.1. Mixing phenomenology

The Schmidt number is defined as usual, namely Sc = ν/D, where ν and D are
viscosity and diffusivity, respectively. The representation and quantification of
these two fluid properties in HiPS are explained in Appendix B.
To orient the model description in terms of the mechanisms governing scalar

mixing in turbulence, the standard phenomenology of mixing regimes is summa-
rized in a schematic in figure 2 of the scalar variance spectra. The small-scale
cutoff of the inertial range is denoted l∗ rather than η because η is dimensionally
prescribed and governs the parameter dependence of l∗ but the physical cutoff
differs from η by a numerical factor. For given Sc, there is a unique ratio l∗s/l

∗ such
that scale breakdown of scalar structure by fluid motion dominates the smoothing
effect of molecular diffusion at scales l > l∗s but molecular diffusion inhibits such
scale breakdown for l < l∗s .
For Sc > 1, l∗s < l∗, and for Sc < 1, l∗s > l∗. For given Sc, there are three

possible regimes depending on the magnitude of l relative to both l∗ and l∗s . The
regimes are indicated in figure 2 where the first word refers to the flow regime
and the second refers to the dominant influence at scale l.
The two Sc subranges differ qualitatively only in the phenomenology of the

intermediate of the three regimes, and those regimes are particularly subtle in
terms of both physics and modeling. For all regimes, the basic scaling properties
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Figure 3: Schematic of HiPS tree levels; (a) for Sc corresponding to tree levels;
(b) for Sc corresponding to scales between tree levels. In (a) and (b), the labels
on the left side correspond to Sc < 1, those on the right correspond to Sc > 1.

are well established, including the Sc dependence of l∗s/l
∗, Those scaling properties

will be specified in what follows with reference to the relevant literature.
By analogy to η and ηb or ηoc, the scales l∗ and l∗s are related in terms of the

Schmidt number as

l∗s = l∗Sc−1/ps . (2.18)

For Sc ⩾ 1, ps = 2, and for Sc ⩽ 1, ps = 4/3 (Yeung & Sreenivasan 2013).
Section 2.5.2 considers scalars with l∗s corresponding to discrete HiPS levels.

Generalization to arbitrary l∗s is given in § 2.5.3.

2.5.2. Discretized Sc values

Figure 3a shows schematics of two scalars on a given tree. The horizontal lines
correspond to tree levels, with the decreasing line length from top to bottom
corresponding to the decreasing length scale. Two scalars are shown with Sc < 1
and Sc > 1 on the left and right of figure 3a, respectively. Each scalar is mixed
across the respective left and right subtrees emanating from nodes at level i∗s,
indicated by the brackets labeled “mixed” spanning levels i > i∗s.
Equations (2.1), (2.18) combine to give the Schmidt number corresponding to

scalars that mix at tree levels i∗s relative to i∗,

Sc = A−ps(i
∗
s−i∗) = A−ps∆i. (2.19)

For A = 1/2, and ps = 4/3 for Sc ⩽ 1, we have Sc ≈ 1, 0.4, 0.16, 0.062, 0.025,
for ∆i = 0, -1, -2, -3, -4, respectively. For Sc ⩾ 1, ps = 2, Sc = 1, 4, 16, 64, 256,
for ∆i = 0, 1, 2, 3, 4, respectively.

2.5.3. Arbitrary Sc

Arbitrary Sc corresponds to scalars with l∗s between two HiPS tree levels such that
i∗s may not be an integer. For a scalar with a given Sc, ∆i = − logSc/(ps logA),
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or

Sc < 1 : i∗s = i∗ − 3 logSc

4 logA
, (2.20)

Sc > 1 : i∗s = i∗ − logSc

2 logA
. (2.21)

Indices i− and i+ designate the lower and upper tree levels bounding i∗s (see
figure 3b). Eddy events that correspond to level indices at or greater than i+
induce homogenization of the scalar throughout each of the left and right subtrees
emanating from the level i+ eddy node. For a level i− eddy event, the scalar is
mixed across the two subtrees of the level i− node with probability p−, where

p− =
i+ − i∗s
i+ − i−

= i+ − i∗s = i− − i∗s + 1. (2.22)

The second and third equalities hold since i+−i− is always unity. This probability
is linear in index space and takes a value of 1 when i∗s = i− and a value of 0 when
i∗s = i+. Using (2.1), (2.3), and (2.5), p− can be written as

p− =
log(l∗s/l+)

log(l−/l+)
=

log(λ∗
s/λ+)

log(λ−/λ+)
. (2.23)

This illustrates that the linear interpolation in index space corresponds to log-
arithmic interpolation between eddy lengths, times or rates, consistent with the
geometric progression of scales with tree level.

2.6. Map-based advection

A distinctive feature of HiPS is its implementation of advection as a sequence
of instantaneous rearrangements of fluid parcels. In this sense a swap event is a
type of map-based advection. Kerstein (2013) compares HiPS to other models
involving advection treatments of this type. Unlike HiPS, those other models are
time advanced in physical space, along a one-dimensional coordinate. It will be
shown that HiPS can be formulated so that it likewise emulates flow evolution
along a representative line of sight through a turbulent flow.
A swap of a pair of equal-size intervals can be performed on a 1D coordinate but

this introduces property discontinuities that correspond to instantaneous nonlocal
transfer of property fluctuations to wavenumber κ = ∞. To avoid this anomaly,
a different map, termed the triplet map, is adopted (Kerstein 1991b).
The closest antecedent to the present HiPS formulation is the linear-eddy

model (LEM) (Kerstein 1991b), in which the analogs of level-dependent HiPS
length and time scales are a continuous range of map sizes and associated time
scales that govern the time sequence of map occurrences. Between successive
map occurrences, molecular transport of scalar properties is time advanced, so
the microphysics is continuous in time rather than event-based.
In both HiPS and LEM, velocity fields have been introduced. They do not

advect fluid directly, but instead they enable on-the-fly evaluation of map-size-
dependent time scales that govern the sequence of map occurrences. These
augmented formulations are denoted as flow HiPS (versus the present mixing
HiPS) (Kerstein 2014) and one-dimensional turbulence (ODT) (Kerstein 2022)
respectively. In flow HiPS, each subtree has an individually evaluated time scale
that varies as the system state evolves. The present HiPS formulation will reach
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its broadest range of applicability when its mixing phenomenology, encompassing
all mixing regimes as parameterized by Sc, is incorporated into flow HiPS.
Flow HiPS is more comprehensively predictive than mixing HiPS in that level

time scales are not preset (and vary from node to node within a given level as
well as with time), and minimal empirical input is needed. Owing to the detailed
validation of flow HiPS that has been performed (Kerstein 2014, 2021), the main
focus here is on demonstration of the scalar advection-diffusion phenomenology
that is captured by the present formulation.

3. Results

3.1. Simulated configurations

As formulated in the previous sections, HiPS simulations correspond to scalar
mixing in homogeneous turbulence. In the following, we consider Lagrangian
parcel-pair dispersion in homogeneous isotropic turbulence (HIT), as well as
scalar mixing in HIT with a mean scalar gradient that is imposed using a jump-
periodic boundary condition. This results in a statistically stationary scalar field
as in DNS comparison cases. Pair-dispersion is discussed in the next section and
the scalar-mixing results are discussed beginning in § 3.3.
For the scalar-mixing configuration, the scalar field is initialized to be uniform

in each half of the tree, with a difference in value of ∆ϕ0. The scalar gradient is
then ∇⟨ϕ⟩ = ∆ϕ0/(L0/2), giving a dimensionless scalar gradient of G = 2 when
∆ϕ0 is taken as the reference scalar value and L0 is the reference length scale.
Implementation of the jump-periodic boundary condition is analogous to its

implementation in DNS. The intent in DNS is to obtain the equivalent of a row
of DNS instantiations aligned with the mean scalar gradient, identical except that
all scalar values in a given instantiation exceed their values in the down-gradient
neighboring instantiation by LDNS∇ϕ, where LDNS is the domain length. The
HiPS analog is to postulate a row of HiPS instantiations with the same properties.
This is implemented through the treatment of the largest eddies that, in a closed
domain, are level-0 swaps that move a quarter of the HiPS fluid volume from left
to right, and a quarter from right to left, across the domain center. To enforce
the mean scalar gradient, this level-0 swap is implemented with probability 1/2,
the alternative (also with probability 1/2) being a level-0 swap analogous to DNS
fluid crossing the boundary between adjacent instantiations. In the latter case,
the quarter-tree that is swapped from right to left has its scalar values decreased
by 2∆ϕ0, while the values are increased by 2∆ϕ0 in the other quarter-tree that
moves from left to right. This is analogous to enforcement of the mean gradient in
DNS by imposing a jump-periodic scalar boundary condition, although the HiPS
implementation results in the scalar gradient being present only at the integral
scale of the tree. Subtrees of any given half-tree have ensemble-mean scalar values
equal to that of their parent half-tree. In § 3.4 it is shown that this formulation
captures the leading-order phenomenology of of scalar transport and mixing along
a representative line of sight aligned with the imposed gradient.

3.2. HiPS dispersion

3.2.1. Background

The dispersion of a particle pair under the influence of turbulence is a fundamental
problem in fluid dynamics (Elsinga et al. 2022). Dispersion refers here to the
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separation time history of an initially close pair of particles. Predictions for
turbulent dispersion of particle pairs date back to the publication by Richardson
(1926) of an empirical approach indicating that the mean squared separation,
⟨Y 2⟩, grows as the third power of time, t3, in inertial-range turbulence. Invoking
Kolmogorov’s similarity theory, Obukhov (1941) concluded that, for dispersion
in the inertial subrange and after an initial induction time, ⟨Y 2⟩ = gϵt3, where
g is the Richardson constant. This dispersion scaling follows dimensionally if the
dispersion in the inertial range depends only on ϵ and time t.

3.2.2. Analysis of parcel-pair dispersion

Using the approach proposed in Kerstein (2013), the dispersion properties of HiPS
are analysed by deriving a differential equation for the evolution of the probability
of pair separation at given tree level. In HiPS, the separation r between two
parcels of proximity i (defined above) is ALi. For convenience, we refer to parcel
separation index as the minimum number of levels k that need to be traversed
to get from one parcel to another along a connected path within the HiPS tree.
Then in figure 1, parcels a and b have separation k = 1, parcels a and d have
separation k = 2, etc. Parcel separation index k is related to proximity index i as
k = Nt−1− i, and separation r is related to k by r = L0A

Nt−k, giving increasing
separation with increasing k. We consider separations k ∈ {1, 2, . . . , Nt − 1}.
Consider an ensemble of HiPS trees with np total parcel pairs across all trees

that initially have separation index k = 1. Parcel separations must initially
increase, but then eddy events can either increase or decrease the pair separation.
The rate of change of the number of pairs with separation index k is given by

dnk

dt
= Ik−1nk−1 +Dk+1nk+1 − (Ik +Dk)nk. (3.1)

Here, I and D are the rates of eddy events that cause an increase I or a decrease
D in parcel-pair separation. The subscripts on I and D indicate the separation
from which the increase or decrease occurs. Ik−1nk−1 is the rate of eddy events
that increase the separation index from k−1 to k, times the number of pairs with
separation index k−1, which gives the rate of change of the number of pairs with
separation index k caused by increases from separation index k−1. The first two
terms on the right-hand side of (3.1) create pairs with separation index k from
neighboring index values (increase from k− 1 or decrease from k+ 1). The third
and fourth terms remove pairs of index k as they are increased or decreased to
neighboring levels k+1 and k− 1. Increases from k− 1 to k occur by separation-
level-k eddy events, and Ik−1 = 1/τk, where τk is the time scale at the tree level
corresponding to separation index k. Similarly, decreases from k + 1 to k occur
by separation-level-(k + 1) eddy events, and Dk+1 = 1/(2τk+1). The 1/2 factor
on D is because half of such eddy events decrease the separation and half leave
it unchanged, depending on the subtrees chosen for the swaps.

Dividing (3.1) by np gives the fraction of parcel pairs for separation index k,
which corresponds to the probability Pk of separation index k. This constitutes a
classic birth-death process, where the evolving separation of a given parcel pair is
a continuous-time Markov chain (Crawford et al. 2018). Parcels with separation
k = 2 correspond to level i∗. Then τk = τ ∗(Lk/l

∗)2/3 = τ ∗A
2
3 (2−k). Let B = A2/3
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and T = t/τ ∗; reordering terms, we can write (3.1) as

dPk

dT
= Bk−2Pk−1 −

(
Bk−1 +

Bk−2

2

)
Pk +

Bk−1

2
Pk+1. (3.2)

This is a system of coupled differential-difference equations with a tridiagonal
matrix form. The initial condition is P1 = 1, Pk>1 = 0. The matrix of coefficients
of P is singular since

∑
k Pk = 1, so we solve for k = 1 to k = Nt − 2, with

PNt−1 = 1−
∑Nt−2

k=1 Pk. Note that for k = 1, the first and third additive terms in
(3.2) are zero since there are no eddy events at the tree level corresponding to
k = 1 (i = Nt−2). Similarly, the second and fourth terms are zero for k = Nt−1
since there are no levels above the apex of the tree. Equation (3.2) is solved
analytically by an eigendecomposition.
The solution Pk with argument k can be converted into a physical-space

pair-separation coordinate r based on conservation of probability, expressed as
Pk∆k = P (r)∆r, where ∆k ≡ 1. Using ∆r ≈ (dr/dk)∆k, with r(k) = L0A

Nt−k

gives dr/dk = −r lnA, and P (r) = −Pk/r lnA. Similarly, we can write P (ln r) =
rP (r) = −Pk/ lnA, emphasizing that P (ln r) ∝ Pk.
Beginning with the initial condition, the Pk profiles migrate to higher k in time.

At large T , a stationary distribution is reached, which is given by

Pk =
2k−1∑Nt−1

j=1 2j−1
=

2k−1

(2Nt − 2Nt−1 − 1)
. (3.3)

This simply reflects that a given parcel’s partner in the pair can have one position
that has separation index k = 1, two positions with separation index k = 2, four
positions with separation index k = 3, etc., consistent with the geometric growth
of the number of parcels with tree level. After sufficient time, the partner location
is statistically independent of the given parcel’s location, resulting in stationarity.
The reasoning that yields the dependence Pk ∝ 2k does not depend on details

such as the k dependence of the coefficients of the terms in (3.2) so it is of
particular interest to assess the physical meaning of this result. Pk ∝ 2k implies

P (r) ∝ 2−1−ln r/ lnA, (3.4)

which follows from P (r) = −Pk/r ln(A) and r(k) = L0A
Nt−k, given above. Sta-

tionarity requires P (r) dr to scale as the d-dimensional volume element rd−1 dr,
so P (r) ∝ rd−1. By counting of parcel pairs with level-k separation, (3.4) gives
A = 2−1/d, as explained in more detail in Appendix A. Thus, for consistency
with the stationary solution for P (r) in homogeneous isotropic turbulence, it
is necessary to use d = 3 in the expression for A for the purpose of modeling
parcel-pair dispersion.
The exact time advancement of HiPS pair dispersion according to (3.2) has

the seemingly obvious property that the solution for the time advancement of
Pk depends only on the initial value of Pk. In fact, this is not self-evident
because many initial system states with nonequivalent multi-parcel correlation
configurations might have the same distribution of pair separations. It is plausible
that the evolution of these nonidentical systems could produce different Pk time
histories. The exact result that this cannot happen in HiPS does not preclude the
possibility that this happens during the time advancement of material particles
in Navier-Stokes turbulence. A data comparison that addresses this issue is
presented in § 3.2.5
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3.2.3. Viscous-range dispersion

The current extension of HiPS to the viscous range allows investigation of viscous-
range as well as inertial-range dispersion. Viscous-range dispersion phenomenol-
ogy is of intrinsic interest as well as serving as a useful context for consideration
of inertial-range dispersion.
Appendix C presents an analysis of the PDF of parcel-pair separation that

approximates (3.2) by Taylor expanding the terms on the right-hand side. This
reduces the set of differential-difference equations to (C 2), a single partial differ-
ential equation. Specialization to the viscous range by setting B equal to unity,
reflecting the uniformity of time scales across tree levels within the viscous range,
yields a Fokker-Planck equation, (C 3), reproduced here:

∂Pk

∂T
= −Vd

∂Pk

∂k
+Dd

∂2Pk

∂k2
, (3.5)

where the two terms on the right-hand-side are drift and diffusion terms, respec-
tively, and Vd and Dd are constants.
For a delta-function initial condition, (3.5) has a closed-form solution, (C 4),

that upon transformation from Pk to P (r) yields (C 5), reproduced here:

P (r) =
1

r(4πD̂dT )1/2
exp

(
[ln(r/r1)− V̂dT ]

2

4D̂dT

)
, (3.6)

where V̂d = Vd ln(1/A), D̂d = Dd[ln(1/A)]2, and r1 = r(k = 1).
Lognormality of the viscous-range pair-separation PDF is likewise obtained the-

oretically (Lundgren 1981) as well as from DNS (Girimaji & Pope 1990; Salazar
& Collins 2009). As explained in Appendix C, the theory predicts numerical
coefficients of the lognormal distribution that govern the relative strengths of
the drift and diffusion terms. Owing to the A dependence that is introduced by
transforming from argument k to argument r ∝ A−k as in the derivation of (3.4),
the corresponding coefficients in (3.6) depend on A. Exact agreement with the
theoretical ratio of the two coefficients is obtained for A = exp(−2/9) ≈ 0.8007.
The nearly exact agreement of this result with the symmetry requirement A = 0.8
(see Appendix A) is fortuitous in that the model thus embodies the necessary
conditions for accurate representation of both the steady state and transient PDF
shape evolution.
An initial-value problem on a finite domain cannot reproduce the lognormal

distribution exactly. The consequent deviation from lognormality is demonstrated
in figure 4a, which shows the time evolution of P (ln(r/r1)). This PDF is obtained
by solving (3.2) for a tree with 50 levels with B set to unity for the initial condition
P1 = 1, Pk>1 = 0, and Neumann conditions at the ends of the k range. In the
plot coordinates, lognormality of P (r) corresponds to a parabola. Although the
deviations from lognormality are expected on a finite domain, they could also
reflect approximations in the derivation of (3.5), but the good agreement seen for
the times and r values least affected by the boundary conditions indicates that
(3.5) closely approximates (3.2).

3.2.4. Inertial-range dispersion

Appendix C shows that Richardson similarity is imposed by construction in the
inertial-range; this is explained heuristically in § 3.3. These considerations leave
open the question of whether and how rapidly particle-pair statistics converge



16
(a) (b) (c)

0.0 2.5 5.0 7.5 10.0
ln(r/r1)

10 4

10 3

10 2

10 1

100

101
P(

ln
(r/

r 1
))

t/ * =0.0
4.0

8.0
16.0

32.0
64.0

10 4 10 2 100 102

t/ 0

10 10

10 8

10 6

10 4

10 2

100

r2 /L
2 0

slope=3

4 2 0 2 4
ln[r/( t3)1/2]

10 4

10 3

10 2

10 1

100

101

P(
ln

[r/
(

t3 )
1/

2 ]
)

Lundgren
t/ 0 = 0.002
t/ 0 = 0.01
t/ 0 = 1
t/ 0 = 4
t/ 0 = 20
lognormal

Figure 4: Pair-dispersion results for a tree with Nt = 50 levels and A = 0.8. (a)
Pair-separation PDFs in the viscous regime at several times; lines are the
solution of (3.2) with B = 1, symbols are (3.6). (b) Mean-square dispersion
versus time in the inertial range. The red highlighted region indicates the

similarity region reproducing Richardson’s t3 law. (c) Scaled pair-separation
PDFs in the inertial range. Lundgren (1981) equation (5.26) is shown, along

with a lognormal distribution. Dashed lines are PDFs at times earlier and later
than the similarity regime. The t/τ0 = 20 PDF is the large-t stationary
asymptote enforced by the bounded k range, corresponding to (3.3).

to the similarity scaling. Indeed, the mean-square separation is seen to converge
to dependence on the cube of time, but this only becomes clear for a tree with
about Nt = 37 levels, corresponding to Re = 24, 732.
The need for a large scale range to obtain Richardson scaling is well known and

its cause has been diagnosed (Elsinga et al. 2022). For HiPS, (3.2) circumvents
the consequent high computational cost by enabling a direct exact solution for the
pair-separation PDF evolution. Barring further theoretical progress, investigation
of finer details such as first-passage times in the similarity regime would require
Monte Carlo simulations. Symmetry considerations enable efficient numerical
implementation, as explained in Appendix A.
The highlighted interval of the plot of ⟨r2⟩ demarcates the Richardson scaling

regime that is examined further. For this purpose, HiPS pair-separation PDFs at
selected times are plotted in figure 4c. For reference, a lognormal distribution is
included with the same mean and variance as the t/τ0 = 1 curve. The two HiPS
PDFs that collapse correspond to the times at the endpoints of the highlighted
interval in figure 4b. HiPS PDFs at intermediate times within the highlighted
interval (not shown) likewise coincide with the plotted HiPS PDFs. The self-
similar form of the HiPS PDF is thus established.
Accordingly, the self-similar HiPS dispersion PDFs are compared in figure 4c

to the inertial-range similarity solution

P (Y ) = 37.0Y 2 exp{−3.52(Y 2/3 + 0.165Y 4/3)} (3.7)

derived theoretically by Lundgren (1981). Following the notations and conven-
tions in that study, Y ≡ r/(ϵ̃t3)1/2 with ϵ̃ = C3/2ϵ, and C = 1.77 is the
Kolmogorov constant used by Lundgren. Since ϵ is indeterminate in HiPS, its
HiPS value is evaluated by setting it relative to the theoretical ϵ so that the mode
of the HiPS and Lundgren PDFs are equal in figure 4c. This enables evaluation of
the Richardson constant g in the dimensional Richardson law ⟨r2⟩ = gϵt3 based
on the dependence shown in figure 4b. Proceeding first by treating nominal HiPS
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time as physical time, g = 4.68 is obtained, which is 8.4 times higher than the
value 0.56 that is obtained in recent studies (Elsinga et al. 2022). As explained
in § 2.3.1, HiPS time advancement is invariant under time rescaling, allowing
nominal HiPS time intervals to be adjusted in accordance with physical flow
development. Then, to align the HiPS and physical g values, a given HiPS time
interval is multiplied by 8.41/3 = 2.0 to obtain the corresponding physical time
interval. This result is specific to d = 3, corresponding to A = 0.8.
Lundgren’s theory resembles other theoretical treatments of dispersion (Salazar

& Collins 2009) in that it is based on Kolmogorov phenomenology and an eddy-
diffusivity framework, but it is notable in its breadth of applicability beyond
dispersion. Its case-specific depth of detail minimizes the required simplifications,
but the detail tends to obscure the physics underlying the predicted trends.
Comparison to HiPS results clarifies the governing physics.
This is shown by first revisiting viscous-range dispersion, governed by (3.2)

with B = 1. For this choice of B, the k dependence of the coefficients on the
right-hand side is eliminated, yielding a biased random walk that is invariant
across scale space discretized into multiplicative strides. This yields lognormality
of P (r), as shown formally in Appendix C and inferred more heuristically (with
DNS confirmation) by Girimaji & Pope (1990).
Taking this as the baseline for comparison to inertial-range dispersion, HiPS

phenomenology straightforwardly explains the shorter tail of P (r) in the latter
regime. The swap operation is the same in both regimes albeit with different
physical interpretations (representation of a physical eddy versus representation
of the nonlocal effect of a Kolmogorov-scale eddy on a smaller-scale state). In
either regime, a parcel pair is subject to separation by increasingly large swaps
as pair separation increases. In the viscous range, swaps of all sizes occur at the
same frequency, but in the inertial range, larger swaps are less frequent. Therefore,
pairs that attain atypically large separation in the inertial range are subject to less
rapid subsequent separation than if governed by viscous-range phenomenology.
This implies a shorter-tailed inertial-range pair-separation PDF.
The format of figure 4c intentionally magnifies the difference between the HiPS

and Lundgren PDFs in the tails. To the extent that the comparison indicates that
Lundgren’s theory and HiPS embody much the same phenomenology, the main
difference between them is that Lundgren invokes closure assumptions while (3.2)
is an exact relation governing ensemble statistics of HiPS spatially and temporally
resolved system advancement. The effect of closures is to suppress high-order
correlations that are a salient cause of large deviations (Touchette 2009). Hence
it is a reasonable hypothesis that HiPS embodies the fine-grained kinematics
underlying dispersion phenomenology modeled on the basis of conventional Kol-
mogorov phenomenology and eddy diffusivity, allowing the further possibility that
preservation of higher-order correlations in HiPS captures additional turbulence
phenomenology beyond the Kolmogorov framework.

3.2.5. Multi-regime dispersion phenomenology

Figure 5 shows pair-separation PDFs for a case spanning the inertial and viscous
ranges. An equation analogous to (3.2) is solved, but viscous-range phenomenol-
ogy is introduced for k values less than a designated pair-separation level k∗

corresponding to the transition between the inertial and viscous ranges. This is
done by enforcing uniform time scales τk = τk∗ for separation levels 1 ⩽ k ⩽ k∗.
Model results are compared to DNS results from Scatamacchia et al. (2012).
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Figure 5: Dispersion PDFs: (a) HiPS, (b) DNS results from Scatamacchia et al.
(2012). Times are at t/τη of 0, 10, 20, 30, 40, 50, 60, 80, and 110. The HiPS

initial condition corresponds to t/τη = 10 in Scatamacchia et al. (2012) (so their
times are 10 units higher). Note the different axis scales used in the two plots

owing to differing normalizations of r.

The initial condition is constructed to be qualitatively similar to that of Scata-
macchia et al. (2012) by matching a linear profile to a parabolic profile (on log
scales). The peak of the DNS initial PDF is close to r/η = 1. The relationship be-
tween η and k∗ is not known a-priori. In principle it could be evaluated empirically
using the procedure applied in §4, but to obtain a straightforward comparison of
DNS and model PDF shape evolution, the initial HiPS profile is instead adjusted
horizontally so as to obtain the best qualitative agreement between model and
DNS results, which implicitly specifies the relationship between η and k∗. Then,
for Nt = 68 levels and k∗ = 40, the k location of linear-to-parabolic transition of
the initial PDF profile, denoted k′, is set to 24.
Another consideration is the relationship between τη and its model analog τ ∗,

which affects both event frequencies and the specification of normalized data-
collection times. We have taken the normalized model time t/τ ∗ to correspond to
its physical counterpart t/τη. To proceed further we adopt the model calibration
in § 3.2.4 establishing that HiPS time intervals must be multiplied by 2 to obtain
the corresponding physical time intervals. The assumed equivalence of t/τ ∗ in
terms of HiPS time and t/τη in terms of physical time therefore requires 2τ ∗ = τη.
This calibration is needed for evaluation of the relationship between r∗ and

η. In HiPS, the starred variables are the characteristic dimensional quantities
corresponding to the smallest scale of eddy occurrences. They are used to form
an eddy-transport coefficient r∗2/τ ∗ that can be normalized by η2/τη to define a
Reynolds number ReT that relates transition-scale eddy transport in HiPS to its
nominal dimensionally defined analog. According to Kraichnan (1962), a suitable
reference value for modeling purposes is ReT = 30. Based on the definition of
ReT and the calibration 2τ ∗ = τη, the relation r∗/η =

√
60 ≈ 8 is obtained.

Thus, if the abscissa of figure 5a were converted from r/r∗ to r/η, the numbers
along the abscissa would increase by roughly an order of magnitude. Applying
the same conversion to the argument of P , the Jacobian of the transformation
would decrease the numbers along the ordinate of figure 5a by roughly an
order of magnitude. These findings bring figure 5a into reasonable quantitative
conformance with figure 5b.
On this basis, it is concluded that the chosen value of k′ yields a suitable
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facsimile of the DNS initial condition and that the main quantitative discrepancy
of the HiPS results is excessively rapid falloff of the far tails of the PDFs that,
owing to PDF normalization, slows the reduction of the peaks of the distributions.
These observations lend credence to the inputs to the parameter calibration,

such as (3.7), and additionally to the analysis in Appendix C, which accordingly
constitutes a plausible basis for interpretation of the results in figure 5. As noted,
(3.6) governing the viscous range corresponds to drift and diffusion in terms of
ln r with constant transport coefficients. For the more general setting in which the
coefficients of the terms in (3.2) have any prescribed k dependencies, that equation
embodies the same phenomenology except that the transport coefficients are now
r dependent in a manner governed by the prescribed k dependencies.
On this basis, the phenomenology underlying the time development of the PDF

shapes can be viewed in terms of the combined influences of drift and diffusion.
The rapid depletion at small r and the emerging shoulder suggest ongoing drift
of probability out of the viscous range that encounters a bottleneck in the
inertial range where time scales progressively increase. Drift dominance is further
indicated by the decrease in time of the small-r slope rather than increase toward
the r2 stationary solution that diffusion dominance would imply. At r values
beyond the transitional bottleneck, drift-dominated evolution is likewise evident
as indicated by the emergence of a large-r dome that seems to be approaching
an invariant shape that slowly broadens as it drifts rightward.
Before these late-time features emerge, there is a brief transient appearance

of a marginally bimodal shape. This transient is associated with bunching of
the large-r PDF tails in the plot format, followed by greater separation of the
successive tails as the dome shape emerges.
The foregoing observations apply equally to the HiPS and DNS results, re-

flecting the absence of any identifiable qualitative differences between them.
Quantitative differences could be at least partly attributable to finite-Reynolds-
number effects. In this regard, the Taylor-scale Reynolds number of the DNS case
is 300. Although the HiPS k range is necessarily finite, inertial-range Kolmogorov
phenomenology is embedded by means of the prescribed k dependencies of the
coefficients of the terms in (C 2), which is a Taylor-expanded form of (3.2).
Scatamacchia et al. (2012) describe the apparent lognormality of PDFs in

figure 5b at small r as a non-trivial result. Present results impart a precise
meaning to this characterization. Pair-dispersion phenomenology has been shown
here to be broadly encompassed by the drift-diffusion paradigm.
Finally, the agreement of figure 5a with figure 5b supports the implication of

HiPS dispersion analysis, noted at the end of § 3.2.2, that a given initial pair-
separation PDF uniquely determines the subsequent time evolution of the PDF
for homogeneous isotropic turbulent flow, at least to a good approximation. To
the authors’ knowledge, evidentiary support for this proposal has not previously
been reported.

3.3. Turbulent flux and turbulent diffusivity

Turning now from purely advective pair dispersion to the phenomenology of
passive-scalar advection-diffusion, the model formulation is extended by intro-
ducing the scalar field ϕ that is subject to micromixing as described in § 2.4 and
jump-periodic boundary conditions as described in § 3.1. Importantly, the under-
lying flow is still stationary homogeneous isotropic turbulence but the change in
the desired outputs from Lagrangian pair-separation statistics to the structural
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properties of the scalar field requires a fundamental change of perspective. As
in previous related work (Kerstein 1991b), this is done by interpreting the HiPS
domain as a line of sight aligned with the mean gradient. The phenomenological
efficacy of the adopted approach is demonstrated by the exact analyses below, in
§ 3.4, and in Appendix D.
For reasons noted below (3.4) and in Appendices A and C, A = 0.8 is required

for the model application to pair dispersion. For the model application to the
imposed-scalar-gradient configuration, the choice A = 1/2 is implicit in the model
formulation but there would be no identified inconsistency resulting from another
choice (see Appendix A). A = 1/2 has been adopted in part owing to its suitability
for intended future applications.
The turbulent diffusivity DT is defined in relation to the turbulent scalar flux

f using a Boussinesq assumption,

f = ⟨u′ϕ′⟩ = −DT∇⟨ϕ⟩, (3.8)

where u′ is a velocity fluctuation (used for reference to standard treatments) and
ϕ′ is the scalar fluctuation referenced to the local mean.
The precise meaning of f for the present HiPS configuration follows from Gauss’

theorem applied, for convenience, to scalar transfer to the right half-tree across
the domain center. Only level-0 internal (vs. jump-periodic) swaps can perform
such transfers. ⟨ϕ⟩ is uniform within each half-tree, precluding any contribution
of smaller-scale swaps to the mean flux whether defined globally or locally.
On average, one swap across the domain center changes the scalar value in half

of the parcels in the right half-tree by the amount −∆ϕ0. Based on the half-tree
size L0/2, the corresponding mean scalar transfer during a time interval T is
−n∆ϕ0L0/4, where the average number n of internal level-0 swaps during the
time interval T is T/(2τ0) because only half of the level-0 swaps are internal. The
dimensionless flux is obtained by dividing by T and normalizing, giving

f

L0∆ϕ0/τ0
= −1

8
. (3.9)

For a three-level tree, this result is obtained in Appendix D by means of exhaustive
enumeration of system states and the swap-induced transitions between them.
Using the convention ∇⟨ϕ⟩/(∆ϕ0/L0) ≡ G = 2 in § 3.1, (3.8) and (3.9) give

DT

L2
0/τ0

=
1

16
. (3.10)

Importantly, (3.10) can be obtained without invoking the flux-gradient rela-
tionship. Level-0 swaps induce a random walk of fluid parcels with diffusivity
DT = L2/2τ , where L is the parcel displacement for each event, and τ is the time
between events. Evaluation of L and τ based on the considerations that have
been described recovers (3.10). Random-walk analysis is the basis of the scalar-
dissipation analysis in Appendix E and is implicit in the dispersion analysis in
Appendix C, which does not involve a scalar field. In Appendix B, a random-
walk approach is used to analyze the HiPS molecular diffusivity. These examples
illustrate the breadth of applicability of the random-walk perspective relative to
the flux-gradient relationship.
The random-walk perspective likewise extends to the level-dependent turbulent

diffusivity of index-i swaps, yielding Di ∝ l2i /τi. For the inertial range, τi ∝ l
2/3
i
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so Di ∝ τ 2
i . Then in the notation of § 3.2.4, d⟨r2⟩/dt ∝ D(r) ∝ t2, yielding the

Richardson scaling. Hence, this scaling is seen to follow directly from enforcement

of τi ∝ l
2/3
i in HiPS. A related explanation in terms of the HiPS dispersion

formalism is provided in § 3.2.4.

3.4. Production and dissipation

In homogeneous turbulence, the scalar variance ⟨ϕ′2⟩ is given by

∂⟨ϕ′2⟩
∂t

= −2⟨u′ϕ′⟩ · ∇⟨ϕ⟩ − 2D⟨∇ϕ′ · ∇ϕ′⟩ = P− ⟨χ⟩. (3.11)

The right-hand side of this equation gives the difference between the mean scalar-
variance production

P = −2⟨u′ϕ′⟩ · ∇⟨ϕ⟩ (3.12)

and the mean scalar-variance dissipation rate ⟨χ⟩ (Yeung & Sreenivasan 2014).
HiPS does not have a continuous physical domain, so calculation of production

and dissipation using the standard definitions cannot be done directly. However,
mean production and dissipation can be evaluated based on their roles as a scalar-
variance source and sink, respectively.
Using (3.12), the first equality in (3.8), (3.9), and ∇⟨ϕ⟩ = 2∆ϕ0/L0, the

nondimensional production

P

(∆ϕ0)2/τ0
=

1

2
(3.13)

is obtained. At steady state, production and dissipation balance and we have

⟨χ⟩
(∆ϕ0)2/τ0

=
1

2
. (3.14)

These values were verified in HiPS simulation as follows. Production occurs
due to level-0 eddies that transport fluid across the mean scalar gradient. In each
half-tree, P is computed as the running sum of the difference in scalar variance
before and after level-0 eddy events, divided by the simulation time. The values in
each half-tree are then averaged. Recall that level-0 eddy events do not change the
scalar values of individual parcels. The mean dissipation is computed similarly. In
each half-tree, the running sum of the difference in scalar variance before and after
eddies resulting in micromixing is accumulated, and this sum is then divided by
the simulation time. Finally, the average of the two half-tree results is computed.
These evaluations serve to illustrate the physical fidelity of the adopted line-

of-sight representation of scalar-field evolution in the imposed-mean-gradient
configuration. Equation (3.12) shows that production is fully captured by such a
representation. The conservative model treatment of scalar-field evolution assures
that dissipation equals production. Without multiple coordinate directions in
which to dissipate scalar variance, local scalar gradients must be higher by an
order-unity factor than in three-dimensional physical space. Model simplifications
relative to Navier-Stokes phenomenology necessarily introduce errors of this
magnitude, so this artifact does not materially degrade model performance. To
some extent, the artifact is subsumed in the calibration of model parameters, as
in § 4. Appendix D shows an exact calculation of the production and dissipation
for a three-level tree, indicating how the described phenomenology is captured in
a configuration of irreducible simplicity.
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Figure 6: PDFs of log10(χ) for varying Sc for (a) constant Re, and (b) constant
Sh. Symbols are used for clarity to indicate PDFs that collapse. For each plot,
a lognormal distribution is shown with parameters corresponding to Sc = 1.

Analogous considerations have been discussed in the context of the LEM
modeling framework (Kerstein 1991b). That approach simulates scalar-field evo-
lution on a 1D domain that likewise represents a line of sight aligned with the
mean scalar gradient. Both the present HiPS formulation and the previous LEM
formulation are precise analogs of the imposed-mean-scalar-gradient configuration
as studied extensively by means of DNS (Donzis et al. 2010; Gotoh & Watanabe
2012; Shete et al. 2022; Watanabe & Gotoh 2004; Yeung & Sreenivasan 2014),
theoretical analysis (Chertkov et al. 1998; Lundgren 1981), and modeling, notably
in the latter regard using the Eddy-Damped Quasi-Normal Markovian model
(Briard & Gomez 2017) and the Lagrangian Markovianized Field Approximation
(Bos 2014).

3.5. PDFs of scalar-variance dissipation rate

Unlike the evaluation of P and ⟨χ⟩, evaluation of the PDF of χ is not uniquely
prescribed on a first-principles basis. We present two approaches for its compu-
tation. The first approach makes use of the standard definition of χ given above
in (3.11). The gradient ∇ϕ′ is computed as ∆ϕ/min(l∗, l∗s), where ∆ϕ is the
difference in scalar value between two neighboring parcel pairs. The diffusivity
D is not considered directly, rather, χ is scaled so that ⟨χ⟩ =

∫
χ̂P (χ̂) dχ̂, where

⟨χ⟩ is evaluated as described above.
The second approach computes χ using the following scaling: χ = 2D∇ϕ′·∇ϕ′ ∼

(∆ϕ)2/τ . Here, τ is a time scale between the micromixing events. In HiPS, we
take τ to be the time since the last change of the parcel state due to micromixing
events and denote this as τtlc. The ∆ϕ is computed as ϕ̃−ϕ̂, where ϕ̃ and ϕ̂ are the
scalar value of a given single parcel before and after an eddy event, respectively.
P (χ) is then constructed, and we apply the same χ scaling as used in the first
approach. It is found that these two approaches give nearly the same results.
Here we present the dissipation PDF using the second approach to compute χ

and examine the impact of Re and Sc variations. PDFs of log10(χ) are shown in
figure 6. Table 1 gives corresponding simulation parameters.
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Table 1: Simulation parameters corresponding to figure 6.

Figure 6a, constant Re Figure 6b, constant Sh
Sc Re Sh i∗ i∗s Sc Re Sh i∗ i∗s

0.0248 256 22.22 6 2 0.0248 65536 5689 12 8
0.1575 256 141.1 6 4 0.1575 10321 5689 10 8

1 256 896 6 6 1 1625 5689 8 8
16 256 14336 6 8 16 101.6 5689 5 7
256 256 229376 6 10 256 6.35 5689 2 6

Figure 6a shows results for five Sc ranging from 0.0248 to 256 at constant Re,
corresponding to a tree with i∗ = 6 and N∗ = 9. The dissipation PDFs nominally
collapse for Sc ⩾ 1 except in the low χ tail. For these cases at constant Re, the
scalar time scale τ ∗

s is constant. Figure 6b shows results for the same Sc values,
but at constant Sherwood number, Sh, given by

Sh =
DT

D
=

(2−A2)ScRe

8A4
, (3.15)

where (3.10), (B 2), Re = A− 4
3 i

∗
, and i∗ = N∗ − 3 are used, and use of (B 2)

restricts (3.15) to integer i∗s. Note that Sh ∝ Pe ≡ ScRe in HiPS. The Sherwood
number is the mass-transfer analog of the Nusselt number Nu and is preferred
when considering multiple scalars with unequal diffusivities. For constant Sh,
Figure 6b shows collapse of the dissipation PDFs for Sc ⩽ 1. For Sc ⩽ 1, i∗s, and
hence τ ∗

s and l∗s , are constant.
Analysis and modeling suggest lognormality of the dissipation rates of kinetic

energy (Obukhov 1962; Kolmogorov 1962) as well as various scalar properties
including the scalar variance (Gurvich & Yaglom 1967). The latter reference
introduces a simple model of scalar dissipation involving a geometric hierarchy
of levels but no representation of Sc effects. It is concluded that the breadth of
the PDF should increase as the number of levels increases.
Such a trend is indicated in Figure 6 in terms of deviation from the lognormal

shape rather than lognormality per se. In both plots, the extreme rightmost tails
of the PDFs broaden with increasing i∗s, yet with faster than lognormal falloff in
all instances.
For Sc = 1, similar PDF shapes, including broader-than-lognormal low-χ tails,

were reported by Kerstein (1991b) based on LEM simulations and by Su &
Clemens (2003) based on measurements in planar jets. Juxtaposed with this is
the DNS result (Shete et al. 2022) shown in Figure 7a. Consistent with the HiPS
setup, the DNS case is homogeneous turbulence with a mean scalar gradient from
Shete et al. (2022). The DNS has a Taylor Reynolds number of Reλ = 633.
Reλ for HiPS is evaluated using an analysis from Gotoh & Watanabe (2012).

They develop a statistical theory for the scalar flux and show that Nu ≈
CqScRe2λ, where the Kolmogorov constant is the only empirical input needed
to obtain Cq = 0.734. This expression is used in HiPS, replacing Nu with Sh.
Using (3.15) gives

Re =
8A4

2−A2
CqRe2λ ≈ 0.21Re2λ, (3.16)
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where the final result is for A = 0.5. This equation completes the specification
of the relationships between the parameters of the HiPS and corresponding DNS
cases.
A caveat regarding (3.16) is that the accuracy of the theoretical result for Nu

is not firmly established. It is used as an interim procedure for relating Re to
Reλ. Sh values for DNS cases are generally not reported but they are readily
extractable from outputs, so the best future procedure is to use HiPS Sh values
equal to the DNS values.
On this basis, figure 7a shows the dissipation PDF for HiPS at Reλ = 559 for a

tree with N∗ = 15 levels, along with the DNS PDF and a lognormal distribution
for reference. The DNS PDF follows the lognormal distribution closely, except at
high dissipation. The HiPS PDF falls off more gradually at low dissipation and
more rapidly at high dissipation. Notwithstanding this quantitative discrepancy,
the HiPS high-dissipation tail exhibits a phenomenologically significant functional
form, as discussed in § 3.6.
Figure 6 is plotted in non-normalized coordinates in order to reflect the Re

and Sc dependencies on low moments (mean and variance) of the PDFs. DNS
studies generally show only normalized PDF with no separate reporting of the
low moments. The novel capability of HiPS to predict these quantities motivates
an ongoing effort to acquire the relevant data for comparison purposes, results of
which will be reported elsewhere.

3.6. High-dissipation phenomenology

Holzer & Siggia (1994) studied passive scalar mixing in two dimensions and found
good agreement with experimental data in more complex configurations. They
show that a stretched-exponential function fits the dissipation PDF in the large-
dissipation tail. Chertkov et al. (1998) analyzed high-Sc scalar advection using
the Kraichnan (1974) model. They derived an expression for P (χ), which can
be represented as log(P (χ)χ1/2) ∝ χ1/3. For χ ≫ ⟨χ⟩, the PDF is given by a
stretched exponential, with logP (χ) ∝ χ1/3.
Figure 7b shows log10(P (χ)χ1/2) and log10(P (χ)) versus χ1/3 for HiPS at

Re = 256 and Sc = 1, Sc = 256. Note that the Sc = 1 curves have been
vertically shifted for clarity. Linear fits through the 12 largest χ values are shown,
corresponding to Chertkov’s model in the coordinates plotted. It is seen that for
both Schmidt numbers, the HiPS data reproduces the predicted 1/3 exponent.
Moreover, the fit is better when the subdominant χ1/2 factor is included, indicat-
ing the possibility that the model captures this dependence.
The 1/3 exponent for Sc = 1 is unexplained beyond speculative proposals

although it has prior empirical support (Chertkov et al. 1998). It is additionally
supported by recent DNS results (Dotson, Yeung & Sreenivasan, unpublished).
Insofar as the Chertkov et al. (1998) analysis is applicable at least at high Sc, it

embodies the distant interactions between Kolmogorov eddies and much smaller
scalar structures in the viscous-advective regime. As explained in § 1, the HiPS
representation of this regime likewise embodies that phenomenology, perhaps
hinting at common features of the analysis and the model whose elucidation could
clarify the significance of the 1/3 exponent. Apart from the specific exponent
value, the broader question of the phenomenological origin of the stretched-
exponent tail of the HiPS PDF is addressed in Appendix E.
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Figure 7: (a) Dissipation PDFs for Sc = 1 and Reλ = 559 (HiPS); Reλ = 633
(DNS of Shete et al. (2022)). (b) PDFs of scalar dissipation for Re = 256 and
Sc=1, Sc=256 plotted on coordinates for comparison to Chertkov et al. (1998)

for the scaling of the high χ tail. The Sc=1 curves are shifted by 2.5
vertical-axis units for clarity.

3.7. Scalar spectra

Scalar transport in turbulent flow is commonly represented and analyzed using
the scalar variance spectrum. A detailed interpretation of the scalar variance spec-
trum in the context of HiPS was provided by Kerstein (2013) but no computations
were performed. Here we provide a summary description and computations of the
scalar spectrum for various Schmidt numbers.
In HiPS, the scalar variance spectra are inferred from the differences of scalar

variances at adjacent levels of the tree. As noted by Kerstein (2013), the quan-
tity

∫∞
κ

E(κ′)dκ′ “scales as the variance of scalar fluctuations associated with
wavenumbers exceeding κ,” so to evaluate the integral and ultimately E(κ), the
wavenumber-restricted variance is first evaluated. The tree structure of HiPS has
discrete, geometrically decreasing length scales with increasing tree level. We can
think of each level i of the tree as having a corresponding wavenumber κi with
li = 2π/κi. A discrete scalar spectrum is then given by

E(κi) =
variϕ− vari+1ϕ

κi+1 − κi

. (3.17)

As A approaches unity, this converges to the familiar continuum relationship
between the scalar spectrum and the variance of the filtered scalar field, assuming
spectrally sharp filtering.
Scalar spectra are obtained for three mixing regimes: inertial-advective, inertial-

diffusive, and viscous-advective. Figure 8 shows scalar spectra from HiPS simu-
lations over a range of Schmidt numbers.
The inertial-advective regime is characterized by turbulent scalar transport

with negligible diffusive effects and spectral transfer from large to small scales
is governed by the scalar-variance dissipation rate χ, which is independent of
the length scale. The increasing advective rate with decreasing length results in
quasi-stationary behavior that responds quickly to scalar variance transferred
from larger scales. In this regime, time scales are related to length scales as
τ ∼ l2/3 and the kinetic-energy spectrum exhibits κ−5/3 scaling. In HiPS, this time
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Figure 8: Scalar variance spectra for (a) Sc ⩾ 1, and (b) Sc ⩽ 1.

scale-length scale relationship is imposed, but as Kerstein (2013) notes “scalar
cascading in HiPS is an outcome rather than a prescribed behavior, so the nature
of that cascading in HiPS must be ascertained.”
It is seen that HiPS does in fact exhibit the -5/3 wavenumber power-law of

the scalar spectrum. While HiPS does not prescribe the cascading behavior, its
formulation is consistent with it, as HiPS subsumes the key phenomenology that
governs it. This is evident as HiPS eddies result in local scale reduction, the eddy
rate increases with decreasing level length giving quasi-stationary behavior, and
the HiPS eddies are non-dissipative at all scales greater than l∗.
Figure 8a shows simulations for scalars with Sc ⩾ 1. Six Sc values are included.

These have Sc = 1, 4, 16, 64, 256, 1024, corresponding to integer values of ∆i =
i∗s − i∗ from 0 to 5, see (2.19). The simulation has a total of 12 levels and i∗ = 4.
This accommodates both a significant wavenumber range of the inertial-advective
regime and extension to smaller scales (i > i∗) for Sc > 1. The simulations were
run for t = 1000τ0, and flow states spaced by time intervals τ0 were processed
beginning with 50τ0.
All spectra show a clear transition between the inertial-advective regime and the

viscous-advective regime and they all obey the −5/3 scaling at low wavenumbers.
In the viscous-advective regime i > i∗, the spectra show the expected κ−1 scaling.
This is most obvious for the scalars with the highest Sc.
In the simple micromixing model used in this study, immediately after a swap

occurs at level i∗s, all parcels in the left subtree of the node at the given eddy level
are mixed to their mean value in that subtree; all parcels in the right subtree are
similarly mixed. This results in no scalar variance among parcels at levels greater
than i∗s, so the scalar variance spectrum is effectively chopped at length scales
below l∗, corresponding to levels i > i∗s. As formulated, this eliminates the need
to implement any eddy events at levels i > i∗s because they would have no effect.
This, however, provides an inadequate representation of the inertial-diffusive

scaling range, for which Batchelor (1959) predicted a −17/3 spectral scaling.
This scaling was demonstrated by Chasnov & Rogallo (1988) and Chasnov (1991)
using simulations of scalar transport in a frozen, Gaussian, isotropic velocity field,
and in LES of decaying and forced turbulence. More recently, DNS by Yeung &
Sreenivasan (2013, 2014) found the −17/3 spectral scaling in forced homogeneous
isotropic turbulence with an imposed mean scalar gradient.
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Accordingly, the Sc < 1 eddy event, which performs the described mixing if
the event level is i∗s, is modified in order to approximate the theoretical spectral
scaling in lieu of the sharp cutoff at level i∗s. Instead of assuredly mixing the
respective two subtrees of the level-i∗s event apex, for any eddy event at level
i ⩾ i∗s, both the left and right subtrees of the event apex are individually mixed
with probability p based on a Bernoulli trial. This allows scalar fluctuations
to persist below the Obukhov-Corrsin scale. At level j > i∗s, we then have an
inhomogeneous scalar fraction qj where q = 1 − p. The scalar variance then
would be qj times what it would be in a −5/3 spectrum. Here it is assumed that
the inertial-advective cascade proceeds as usual in the successive generations of
unmixed subtrees, which requires the re-introduction of eddy events at levels
j > i∗s where such events can change the system state (versus the absence of such
events for q = 0). Recalling that spectral amplitude scales in proportion to the
scalar variance, the -17/3 power-law spectrum scaling is obtained by imposing
the requirement

Ej

Ei∗s

=
varjϕ

vari∗sϕ
= qj

(
κj

κi∗s

)−5/3

=

(
κj

κi∗s

)−17/3

. (3.18)

Now, l∗s/lj = 2j, so κj/κi∗s
= 2j, and j = log2(κj/κi∗s

). Using this and solving

the above equation for q gives q = 25/3−17/3 = 0.0625 and p = 1 − q = 0.9375.
This result is approximate because it is based on strict mean-field Kolmogorov
phenomenology, omitting fluctuation effects such as backscatter (discussed with
reference to the viscous-advective regime) that are inherent to HiPS.
On this basis, figure 8b shows simulation results for Sc < 1 in the inertial-

diffusive regime. Each case again includes 12 tree levels and was run for the
same time with the same number of flow states processed as the cases shown in
figure 8a. That figure had i∗ = 4 for Sc = 1, with higher levels accommodating
larger Sc. For Sc < 1 in figure 8b, i∗ = 9 for Sc = 1 (with levels starting at 0),
and Sc = 1, 0.397, 0.157, 0.0625, 0.0248, and 0.098 (rounded), corresponding to
∆i = i∗s − i∗ from 0 to -5, respectively. The slopes in the inertial-diffusive regime
are slightly steeper than -17/3, but they can be brought into agreement with this
exponent by using a slightly lower value of p (around 0.9).
p < 1 allows gradual imposition of homogeneity to compete with swap-induced

introduction of inhomogeneity such that the balance can be tuned to reproduce
-17/3 scaling. This compensates for the underlying instantaneous nature of state
changes in the model, a model artifact that introduces a splitting error. LEM
is subject to a comparable artifact, producing an exponent error that has been
explained quantitatively (Kerstein 1991b), but the LEM formulation does not
accommodate a convenient correction.
The scalar spectra discussed above and plotted in figure 8 are discrete. As

an alternative formulation, we can evaluate continuous spectra in the inertial-
advective regime, which is convenient for analysis. This is done using a power-law
with an exponent of −5/3, consistent with the presented spectra. The power-law
amplitude is set so that the integral of the continuous spectra, extending to level 1
corresponding to LI , recovers the total variance. Using such continuous spectra,
we denote the compensated spectrum Eκ5/3 as Eκ53; its nondimensional value is

Eκ53

∆ϕ2
0/L

2/3
0

= 4.3. (3.19)
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This is based on a simulation with Nt = 12 levels and Sc = 1, but applies
generally given the collapse of the scalar spectra in the inertial-advective range,
evident in figure 8.

4. Empirical correspondence

Equation (3.16) expresses the physical parameter Reλ in terms of the model
parameters Re and Sc. In conjunction with the equivalence of model and physical
Sc values (see Appendix B), this enables quantitatively consistent comparison to
DNS, as in Figure 7a.
Beyond this, it is of interest to quantify the relationships between model and

physical values of various flow properties. Given reference scales L0, τ0, and ∆ϕ0,
a HiPS simulation is defined in terms of Re, Sc, and the dimensionless scalar
gradient G. All other dimensionless quantities will be functions of these.
In previous sections, we evaluated the mean scalar dissipation rate, turbulent

diffusivity, and amplitude of the compensated inertial-range spectrum. They are
reproduced here for convenience and denoted Cχ and CD, and CE, respectively:

⟨χ⟩
∆ϕ2

0/τ0
= Cχ =

1

2
,

DT

L2
0/τ0

= CD =
1

16
,

Eκ53

∆ϕ2
0/L

2/3
0

= CE = 4.3. (4.1)

The scalar spectrum has the model form E(κ) = β⟨χ⟩ϵ−1/3κ−5/3. Solving this
for the kinetic energy dissipation rate ϵ and using β = 0.7 as the Obukhov-Corrsin
constant (Donzis et al. 2010) gives

ϵ

L2
0/τ

3
0

=

(
β⟨χ⟩
Eκ53

)3

/
L2

0

τ 3
0

≡ Cϵ = 0.00054. (4.2)

Donzis et al. (2010) performed DNS of passive scalar mixing in homogeneous
turbulence with a mean scalar gradient, corresponding to the HiPS simulations
considered here. They report a sharp transition from inertial-advective to viscous-
advective spectrum scaling at κ∗η ≈ 0.05. Using κ∗ = 2π/l∗ gives

l∗

η
= Cη = 126. (4.3)

We adopt this value for calibration, noting however that measurements not
precisely equivalent to the DNS setup yield Cη ≈ 20 (Hill 1978).
Appendix B gives the HiPS viscosity as ν/(L2

0/τ0) = A4N∗/3/(2(2 − A2)).
This can be compared to a physical viscosity ν̂ using the definition of η as
η = (ν̂3/ϵ)1/4. Then (4.2), (4.3), and l∗ = L0A

i∗ = L0A
N∗−3 give ν̂/(L2

0/τ0) =
(Cϵ/C

4
η)

1/3A4N∗/3/A4. The ratio ν/ν̂ is then

ν

ν̂
=

A4

2(2−A2)

(
C4

η

Cϵ

)1/3

= Cν = 139 (4.4)

for A = 0.5. It was noted that the physical Sc must equal the HiPS Sc for
consistent representation of the scalar transport regimes. Hence, D/D̂ = ν/ν̂.
As explained in Appendix B, individual HiPS transport coefficients scale with

the frequency of mixing events. Their adjustability thus reflects the freedom in
HiPS to rescale time without affecting single-time ensemble statistics (assuming
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statistical stationarity), as implied by a related discussion in § 2.3.1. For the time-
developing process examined in § 3.2, a completely different calibration approach
is adopted in which time-rescaling freedom allows model time to be calibrated
relative to physical time.

5. Discussion and conclusions

5.1. Model extensions

Hierarchical parcel swapping (HiPS) was originally introduced as a formulation
designed to time advance unity-Sc diffusive scalar fields advected by parametri-
cally specified inertial-range turbulence (Kerstein 2013), extensible to turbulent
flow simulation by introducing a vector velocity field (Kerstein 2013, 2014). Here,
extension to nonunity Sc has been achieved by means of two model extensions.
For Sc > 1, the viscous regime has been incorporated by adopting the time

scale of the smallest turbulent eddies as the advective time scale governing
swap occurrences at all length scales below the inertial range, where such swaps
idealize the viscous-range effects of the smallest inertial-range eddies rather than
(nonexistent) smaller-scale eddies. On this basis, the HiPS tree has been extended
to the Sc-dependent Batchelor scale ηb, at which each pair of adjacent parcels is
mixed as needed to maintain compositional equivalence.
For Sc < 1, the Obukhov-Corrsin scale exceeds the transition scale l∗ from

inertial to viscous scaling so mixing is introduced within the subrange [ηoc, l
∗]

of the inertial range. This generalizes the enforcement of the compositional
uniformity of parcel pairs to imposition of this requirement on larger subtrees
with the caveat that this nonlocal form of mixing is applied with probability less
than unity when a de-homogenizing change occurs, where this ad hoc procedure
serves to enforce −17/3 spectral scaling in the inertial-diffusive scale range.
For any Sc, the HiPS tree can be extended as far down in scale as desired

provided that the appropriate degree of compositional uniformity is enforced
below scale lb. In principle, the ideal tree structure can accommodate any number
of scalars with no bounds on the associated Sc values.
These model extensions serve two purposes. First, they are the basis for study of

flow and mixing physics that are captured by the model. Second, they broaden the
scope of scientific and practical applications of the model. Present contributions
that fall within the respective categories are summarized.

5.2. Physics investigations and results

The practical step of extending HiPS into the viscous range in order to accom-
modate high-Sc scalar fields extended the HiPS representation of turbulence
phenomenology in several ways. First, the analytical tractability of HiPS viscous-
range parcel-pair dispersion led to a closed-form solution for pair-separation
PDF evolution in conformance with theory (Lundgren 1981), establishing the
quantitative accuracy of the balance of drift and diffusion mechanisms governing
dispersion. Second, by introducing viscous-range swaps that represent the effects
of physical eddies on smaller-scale scalar structures that are not subject to
comparably small eddies, distant interactions were introduced that capture a
subtle large-deviation property of scalar dissipation.
The swaps alone, which are simply displacements of subtrees within the HiPS

tree structure, have been shown to capture much of the phenomenology of parcel-
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pair dispersion within and across the viscous and inertial ranges. A notable
distinction between the HiPS treatments of dispersion and scalar mixing is that
Lagrangian dispersion requires a spherically symmetric treatment in HiPS while
the mean scalar gradient is imposed using a boundary condition that requires
the physical interpretation of this HiPS setup as a line of sight aligned with
the gradient. The distinct treatments of these two applications are discussed in
Appendix A.

For the viscous regime of pair dispersion, the model similarity solution has
been shown analytically to match the theoretical result of Lundgren (1981) with
near-exact precision. The model similarity solution for the inertial regime exhibits
minor deviations from Lundgren’s semi-empirical formula. The model solution for
pair-dispersion PDF evolution initialized as in the DNS of Scatamacchia et al.
(2012) is in reasonable quantitative agreement with the evolution produced by
the DNS, notably including the cross-coupling of viscous-range and inertial-range
phenomenology. This indicates that no bespoke transitional treatment is required
in order to capture the cross-coupling. The quantitative comparison relies on pa-
rameter calibration using Lundgren’s formula, the empirical Richardson constant,
and an empirical Reynolds number relating transport by the smallest turbulent
eddies to the nominal dimensionally prescribed value.

Notably, the tail behavior of the PDF of scalar-variance dissipation is found to
be in conformity with a high-Sc theoretical prediction of a stretched-exponential
shape based on analysis of scalar intermittency induced by non-intermittent
narrowband stochastic advection (Chertkov et al. 1998). The analysis is based on
the scalar transport equation subject to stochastic forcing of scalar fluctuations
and a stochastic solenoidal velocity field. The present results indicate that the
theoretically predicted intermittency scaling might not be uniquely contingent on
the standard continuum form of scalar transport, but instead could have a deeper
origin that is captured by a minimal mathematical abstraction of advection-
diffusion phenomenology.

In this context, it is instructive to revisit the HiPS representation of viscous-
range distant-interaction effects. A small viscous-range scalar structure is subject
to order-unity scale reduction under the influence of a Kolmogorov-scale eddy.
In HiPS, this is emulated by implementing a swap at the scale of the structure.
A sequence of such swaps lacks the coherence resulting from the simultaneous
action of the eddy on structures at all scales below the eddy size. The HiPS results
suggest that this coherence is not a leading-order influence on the functional form
of the tail of the dissipation PDF, raising the question of whether this inference
can be directly confirmed by some form of analysis.

The viscous-range swaps that represent distant interactions in HiPS are for-
mally equivalent to the inertial-range swaps that represent individual turbulent
eddies, the only difference being the level dependence of swap rates in the inertial
range in contrast to the lack of such dependence in the viscous range. Therefore, it
is reasonable to expect some degree of qualitative consistency of the HiPS viscous-
range and inertial-range (Sc = 1) PDF shapes. The most remarkable but as yet
unexplained outcome is that HiPS yields the same exponent value 1/3 for both
regimes. Given that the exponent value has empirical support for both regimes as
well as theoretical support for the viscous regime, it is of particular importance to
seek an explanation of these observations that improves on previous speculative
proposals (Chertkov et al. 1998). Finally, an abstraction of HiPS phenomenology
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that transparently demonstrates the origin of the HiPS stretched-exponential tail
has been presented in Appendix E.
This raises the broader question of the HiPS representation of inertial-range

scalar intermittency. A suggestive indication is that LEM has been shown to
reproduce scalar structure-function exponents with reasonable quantitative accu-
racy over a significant range of structure-function orders (Kerstein 1991b). This
has been explained by an analysis (Kalda & Morozenko 2008) that suggests some
commonality with the HiPS representation of inertial-range phenomenology. The
implications of these observations will be addressed elsewhere.

5.3. Capability development for applications

DNS data has been used to calibrate coefficients that relate model scalar power-
spectrum amplitudes and transition wavenumbers to their physical counterparts.
This will enable future quantitative application of the model to flow configura-
tions of interest.
The extension to nonunity Sc enables model application to heat transfer with

nonunity Pr and further model extension to reacting flows subject to the effects of
multi-stream mixing and differential diffusion. For these applications, it remains
to be determined whether HiPS will have overall cost/performance advantages
relative to the triplet-map-based methods LEM and ODT, whose resolution
of scalar diffusion in 1D physical space is costly but provides high fidelity for
combustion and related applications (Kerstein 2022).
One pertinent consideration is that, as in HiPS, the triplet map imposes order-

one multiplicative scale reduction, but unlike a HiPS swap, one triplet map can
unphysically increase pair separation by an arbitrarily large multiplicative factor.
Consequently, LEM and ODT cannot match the high-fidelity HiPS dispersion
phenomenology that is demonstrated in § 3.2.
The most important future extension of HiPS is incorporation of the newly

introduced features into flow HiPS (Kerstein 2014, 2021). This can broaden the
range of flow phenomena that can be amalgamated into a unitary modeling
framework. Suitability for this future work was a consideration in the formulation
of the present version of the model, as explained in Appendix A.
In contrast to present and future model extensions, a minimal configuration

is used to highlight the simplicity of HiPS advancement in Appendix D. After
an initial transient, the system toggles between two states. This enables the
use of enumeration of cases to evaluate turbulent flux, production, and scalar
dissipation subject to a mean gradient imposed by a boundary condition that
enforces statistical stationarity. This demonstrates the irreducible simplicity of
the HiPS advection and mixing treatments. In this sense, the highest degree of
abstraction that can usefully represent a variety of turbulent mixing processes
within an unsteady, spatially localized framework has been established.
A feature that will facilitate the use of HiPS for applied studies is its formal re-

semblance to existing mixing models. In particular, subgrid-scale mixing closures
of conventional under-resolved three-dimensional flow computations typically
involve a collection of parcels that are mixed either pairwise or with the notional
mean parcel composition (Fox 2003). Pairwise mixing can be based on random
parcel pairings (Curl 1963) or pairing weighted by the similarity of parcel compo-
sitions (Subramaniam & Pope 1998). To the extent that time advancement of the
PDF of parcel compositions is sufficient to close the flow computation, the role of
HiPS would be to introduce turbulence phenomenology into the selection of parcel
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pairs to be mixed. Thus, the time-advancement operations need no modifications
other than a different source of the inputs that specify which parcels should
be selected to be mixed. The previously documented computational efficiency
of HiPS numerical implementation (Kerstein 2014) indicates its practicality as
a subgrid closure. This offers the prospect of a straightforward remedy for
longstanding deficiencies of existing mixing closures (Fox 2003).
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Appendix A. Symmetry, dimensionality, and scale discretization

The scale-reduction parameter A and its association with the effective physical-
space dimensionality d of the HiPS tree are discussed in § 2.2. The reasoning is
based on the multiplicative increase of the number of parcels as levels are added
to a HiPS tree for a given A value. This does not directly imply that the choice of
A is consequential for a given model instantiation, other than that A controls the
number of levels needed to span a particular scale range such as [l∗, L0]. In this
context the choice of A is ostensibly of minor importance, serving for instance
to control the number of data points appearing in the spectra curves plotted in
figure 8. However, it is more broadly consequential, as discussed below (3.4).
To clarify the influence of the choice of A, a notional swap-based formulation of

pair dispersion in 3D physical space is outlined. Suppose that the flow domain in
3D continuum space is discretized into equal-volume spherical shells concentric
with one of the two advected particles. Then a swap of any two sets of shells
requires the shell thickness as well as the inner radius of each shell to change in
order to preserve volumes. Our sole concern is the time history of the distance r of
the second particle from the first particle at the origin. Owing to the equi-volume
partition of the flow domain, r is uniquely determined by, albeit not proportional
to, the number of shells between the second particle and the origin.
The HiPS version of this formulation is analogous, except that the set of possible

values of r is finite based on the HiPS topological definition of pair separation.
Multiple shells have the same r value, but given an initial condition of equi-volume
parcels that sum within each subtree associated with given r to the appropriate
subtree volume, the volume-preserving shell displacements satisfy conservation
of pair-separation probability. This assures that the steady-state condition of
spatially uniform probability density of the second-particle location expressed in
terms of r is satisfied.
This geometrical picture corresponds to a specialization of the ‘reduced’ HiPS

formulation shown in figure 1 of Kerstein (2021). The location of the second
particle is referenced to the location of the first particle, which is therefore
held fixed at the location of the leftmost parcel to avoid repeated coordinate
transformations. This prohibits swaps containing the first particle. The number
of parcels in each successive subtree corresponding to the next larger r value is
double the preceding number, so the associated subtree volumes likewise double.
The ratio of the r value of one such subtree to the next defines the level length-
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scale stride A. Thus, A is the ratio of radii associated with two successive subtree
volumes. Those volumes scale as (Ar)3 − (A2r)3 and r3 − (Ar)3, respectively,
where, for convenience, the innermost radius is designated as A2r. As noted, the
latter subtree volume is twice the former, yielding A = 2−1/3. This reasoning
geometrically instantiates the explanation in § 2.2.
Importantly, the present application to pair dispersion does not involve Monte

Carlo implementation of HiPS per se, but rather, evolution equations governing
the pair-separation PDF parameterized by the level index k supplemented by
a geometrically based transformation to the r coordinate that identifies the
required A value. The reduced HiPS formulation does not capture the full HiPS
phenomenology (Kerstein 2021) but for pair dispersion a fully equivalent reduced
version can be formulated, thereby reducing the number of required parcels to
the number of tree levels. As will be reported elsewhere, this will enable low-
cost Monte Carlo pair-dispersion simulations. This is useful because outputs of
interest that are accessible only by means of Monte Carlo simulations, such as
first-passage times and level-crossing statistics, can then be obtained.
To adapt this reasoning for application to advected scalar fields, the cylindrical

temporally developing (meaning statistically homogeneous in the axial direction)
jet is considered. The leftmost parcel pair represents the initial jet flow with the
first parcel interpreted as an axially aligned circular cylinder while successive
parcels represent cylindrical shells. The cylinder and successive shells all have the
same cross-sectional area such that for a given fixed cylinder height z (which in
DNS would be the axial domain length, with periodic boundary conditions applied
axially) they are all equi-volume and therefore suitable for conservative swapping.
As in the case of spherical symmetry, the proximity criterion aggregrates parcels
into equal-r groups such that the number of parcels per group doubles for each
factor of 1/A increase of r. Applying the same analysis as for the spherical case
but with the zr dr volume-element scaling rather than the spherical r2 dr scaling,
the result A = 2−1/2 is obtained.
This cylindrical formulation enables time advancement of the radial distribu-

tion of a scalar field initially confined to a radial interval representing the jet
nozzle outflow. Analogous considerations apply to the planar jet issuing from a
notionally unbounded rectangular slot, yielding A = 1/2.
Different considerations apply to the present HiPS application involving a

jump-periodic scalar boundary condition. The scalar-field deviation from the
mean is axially homogeneous and homogeneous in planes normal to the imposed
axial mean scalar gradient, but unlike the flow field it is anisotropic.
Unlike the jet examples that evolve the scalar field in a coordinate normal to

the axis, HiPS evolves the scalar field along a representative axial line of sight. For
this setup, the parcels in each of the HiPS half-trees are nominally at the same
axial location so the only identified axial separation is between parcels that are
in different half-trees, corresponding to separation L0/2. Thus, only the largest
possible swap size can induce nonzero axial displacements. Smaller-scale swaps
nominally involve axially collocated parcels, so the tree structure at smaller scales
serves only to identify parcel pairs or groups that are subject to mixing. In this
context, A is relevant only for discretizing scales from a wavenumber viewpoint
and its value serves mainly to control the wavenumber stride of discrete spectra
such as those shown in figure 8.
However, A is relevant for the largest swap involving axial displacements ±L0/2

of size-L0/4 quarter-trees. Because the swaps are conservative, the absence of
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parcel-width adjustment upon axial physical-space displacement implies that
parcel volumes scale linearly with parcel size. In effect, swaps of quarter-trees
are treated as though they were axial displacements of unbounded planar slabs
of width L0/4. The equivalence of this formulation to the planar-jet case indicates
that A = 1/2 holds for the former as well as the latter.
An A value corresponding to non-Cartesian symmetry would imply a specified

coordinate origin, but if it were chosen to be at the center of the HiPS domain
then all parcels would be at the same absolute distance from that origin, so
when a parcel is displaced from one half-tree to the other, no change in parcel
width is implied. Although any A value would thus be operationally valid, the
stride A = 1/2 was applied in this study, yielding an economical, conceptually
transparent formulation. This choice was additionally motivated by anticipation
of the future incorporation of the current mixing-HiPS formulation into flow HiPS
as previously (Kerstein 2014) implemented, for which flow inhomogeneity along
the HiPS line of sight imposes the choice A = 1/2. That model formulation
indicated some performance degradation when using other A values. Experience
with subgrid-scale closures involving map-based advection (Kerstein 2022) like-
wise supports the preference for a planar-symmetric formulation.

Appendix B. Evaluation of HiPS molecular-transport coefficients

In HiPS, Sc is a parameter that is used to specify ratios of length scales that
demarcate regime transitions. It has been noted that consistency with the scaling
laws governing transitions between scalar-transport regimes requires Sc in HiPS
to be the same as the physical Sc value. For present model applications, this
avoids the need to specify the values of the individual molecular-transport coef-
ficients in the physical defintion Sc = ν/D. However, future model applications
will require these values and they are of present relevance to the evaluation of
the relationship between their model values and respective physical values in § 4.
Therefore, a derivation of their values is presented.
Although viscosity has no direct role in the current model formulation, eval-

uation of the HiPS value of D for given Sc yields the implied viscosity value
ν = ScD. We denote the value of D for Sc = 1 as D1, with ν = D1.
The present HiPS formulation can accommodate multiple scalars encompassing

an arbitrary range of Sc values. This general setting is adopted so that the analysis
that follows is as widely applicable as possible. In this context, termination of
the HiPS tree at any finite number Nt of levels cannot accommodate all cases of
possible interest. Therefore a notional infinite-depth tree is assumed.
In HiPS, Sc < 1 is implemented by introducing homogenization of subtrees

emanating from tree level i∗s, corresponding to length scale l∗s . On an infinite-
depth tree, subtree homogenization is required for all scalars. Indeed, even on a
finite-depth tree with multiple scalars that have unequal diffusivities, including
at least one high-Sc scalar, all other scalars except possibly the highest-Sc scalar
must be subject to subtree homogenization. Therefore this modification of the
model has practical as well as conceptual relevance.
Sc < 1 scalars deviate from this formulation in that homogenization is imple-

mented with probability p < 1. The analysis that follows can be extended to
accommodate this but then it is not fully consistent with Sc = D1/D. Since p is
close to unity, the inconsistency is quantitatively small, but practical applications
might not be sensitive to the difference between the −17/3 inertial-diffusive
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spectral scaling and a sharp cutoff at length scale l∗s , so p can be set to unity
to avoid the discrepancy. This will be handled on a case-specific basis in future
model applications.
A related detail is that l∗s will not generally correspond to a level length

scale li. The analysis below can be extended to accommodate this using the
approach in § 2.5.3, but since the relevant points are captured by assuming exact
correspondence, this extension is not presented here.
On this basis, the HiPS analog of the molecular diffusivity of a Sc = 1 (hence

l∗s = l∗ and i∗s = i∗) scalar, D1, is evaluated. Namely, random-walk theory is
applied to the displacements of a notional molecule of the scalar species that are
implied by the sequence of homogenization instances during HiPS advancement.
As explained in Appendix A, we adopt a line-of-sight interpretation of the HiPS
domain, so the diffusivity is based on 1D random-walk theory. (In § 3.4 the
turbulent diffusivity is similarly evaluated, albeit on the basis of swap-induced
parcel displacements rather than mixing-induced molecule displacements.)

Accordingly, the diffusivity is evaluated as D1 = R2/2τ , where R2 is the mean
square displacement of fluid undergoing mixing, and τ = τ ∗ is the mean time be-
tween displacements. A notional molecule in a parcel within a subtree undergoing
homogenization is deemed equally likely to reside in any of the subtree parcels
after homogenization, therefore, the number of possible displacements equals
the number of parcels in the subtree (including a zero-distance displacement for
molecules remaining in their original position).
In figure 1, consider homogenization over the eight parcels in the left half-tree

with i∗s = 0. The scalar in parcel a, for instance, would be spread across all
eight parcels with displacement magnitudes of 0 (no motion to parcel a), l∗sA

4

(parcel b), l∗sA
3 (parcels c and d), and l∗sA

2 (parcels e-h). Note the degeneracy
of displacement due to the definition of parcel proximity. In general, the mean

square displacement is given by R2 = l∗2s A4

2J+1

∑J
j=0 2

j(A2)J−j, where the sum
ranges over nonzero displacement magnitudes, from j = 0, corresponding to
the nearest-neighbor separation, to the largest displacement J ≡ Nt − 3 − i∗s,
which is equal to the number of levels between i∗s and the parcel grandparent
level. (The normalization preceding the sum includes the zero-displacement case.)
In the above example referencing figure 1 with i∗s = 0, we have Nt = 5 and
J = 2. Using the sum of a geometric series, the above equation simplifies to

R2 = 1
2
l∗2s A4

(
2
A2 −

(
2
A2

)−J
)
/
(

2
A2 − 1

)
.

As noted, the unique universally applicable case is Nt = ∞, and the finite depth
used in numerical applications introduces spatial-discretization error. Specializing
R2 to the limit of infinite J gives R2 = l∗2A4/(2 − A2). Combining results, and
using D = D1/Sc gives

D

l∗2/τ ∗ =
A4

2(2−A2)Sc
, (B 1)

corresponding to

D

L2
0/τ0

=
A

4N∗
3

2(2−A2)Sc
. (B 2)

Although these results systematically quantify the molecular transport associ-
ated with HiPS mixing, this does not guarantee the physical fidelity of the inferred
results. The conditioning of the occurrence of molecular transport on advection
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events in HiPS is not causally correct. Nevertheless, the overall behavior is
phenomenologically self-consistent, as indicated by the reported results. Viscosity
was similarly inferred with reasonable accuracy from HiPS mixing in Kerstein
(2014), albeit computationally rather than analytically.

Appendix C. Analysis of the time advancement of the PDF of
parcel-pair separation

To compare (3.2) to conventional representations of pair-dispersion statistics, that
equation is approximated by treating k as continuous and Taylor expanding the
right-hand side. First, (3.2) is multiplied by 2B1−k, giving

2B1−k dPk

dT
= 2BPk−1 − (2 +B)Pk + Pk+1. (C 1)

Substitution of the Taylor expansion Pk±1 = Pk± dPk

dk

∣∣
k
+ 1

2
d2Pk

dk2

∣∣∣
k
into (C 1) gives

2B1−k ∂Pk

∂T
= (B − 1)Pk − (2B − 1)

∂Pk

∂k
+

(
B +

1

2

)
∂2Pk

∂k2
. (C 2)

(Note that in the Taylor expansion, the k-space interval ∆k = (k + 1)− k = 1 is
used.) At this point the truncation of the expansion at second order is arbitrary
but its validity is addressed in what follows.
Equation (C 1) is specialized for application to the viscous range by setting

B equal to unity, which has the same effect in (C 2) as setting τk = τ ∗ for
all k. Importantly, this decouples B from its definition in terms of A. The
underlying model still depends on A < 1 through the A dependence of the
eventual conversion from k to r. On this basis, (C 2) reduces to

∂Pk

∂T
= −Vd

∂Pk

∂k
+Dd

∂2Pk

∂k2
, (C 3)

where Vd = 1/2 and Dd = 3/4. The solution for Pk(T = 0) = δ(k − 1) is

Pk =
1

(4πDdT )1/2
exp [(k − 1− VdT )

2/(4DdT )]. (C 4)

Next, Pk is converted to P (r) where r is the physical-space parcel separation
corresponding to level k. The probability in the k interval ∆k = 1 is Pk ∆k = Pk,
which must equal the same probability expressed as P (r)∆r, where ∆r = r−Ar.
Then P (r) = Pk∆k/∆r. The parcel-pair separation is r = L0A

Nt−k, or r =
r1A

1−k, where r1 = r(k = 1). Again treating k as continuous, ∆k/∆r is evaluated
as dk/dr = [r ln(1/A)]−1, and P (r) is lognormally distributed:

P (r) =
1

r(4πD̂dT )1/2
exp

(
[ln(r/r1)− V̂dT ]

2

4D̂dT

)
. (C 5)

Here, V̂d = Vd ln(1/A), and D̂d = Dd[ln(1/A)]2, retaining dependence on A.
For bounded r, as in any computation, the tails of the PDF are truncated and

the solution between the bounds deviates from lognormal form. For these reasons,
computed PDFs P (r) must be scaled by a time-dependent normalization factor.
Lundgren (1981) likewise obtains lognormally distributed P (r) for the viscous
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range, but his theory yields a different differential equation whose solution gives
the result V̂d/D̂d = 3, while the HiPS value is 2/[3 ln(1/A)]. The Lundgren value
is matched for A = exp(−2/9) = 0.8. Dimensional considerations discussed in
§ 3.2.2 yield the requirement that A = 2−1/3, which is fortuitously within 1% of
0.8.
Thus, HiPS yields a unique prediction of viscous-range self-similar pair-

separation PDF evolution in three dimensions that is in near-exact agreement
with Lundgren’s result. However, Lundgren (1981) obtains the same viscous-
range result for two as for three dimensions, while for d = 2 HiPS requires
A = 2−1/2 = 0.71, which confirms that the exactitude of the agreement with
Lundgren (1981) for d = 3 is fortuitous. In this regard, the lack of A dependence
of Pk when (C 1) is specialized to the viscous range highlights the distinction
between the internal consistency of HiPS and the issues that arise when
transforming to physical space.
Regarding the accuracy of the Taylor-series truncation in (C 2), the discussion

of figure 4a highlights the close agreement between the analytically derived PDF
for the viscous range and the exact numerical result. A more definitive test is
comparison of the equilibrium PDF shape obtained from the specialization of
(C 2) to stationarity and the exact equilibrium result, (3.3). (To verify that
stationarity corresponds to equilibrium, note that the exact equilibrium result
satisfies (C 1) with the left-hand side set equal to zero.) For the viscous range,
substitution of B = 1 and the ansatz Pk ∝ qk into (C 2) yields the stationary
solution q = exp(2/3) = 1.95. Comparison to the exact equilibrium result Pk ∝ 2k

indicates that, at least for this regime, the Taylor-series truncation is fairly
accurate albeit inexact.
Relaxing the B = 1 restriction yields a B-dependent stationary solution of

(C 2), with q = 2 only for A close to 0.6. For the A values of interest, the deviations
from the exact stationary solution are not large, but this is immaterial. The only
tangible present benefit of (C 2) is that its specialization to (C 5) transparently
exhibits the dispersion phenomenology in a manner that led to the parameter
assignment A = 0.8 and thus to predictive capability across scaling regimes.
The inertial-range dependence of level time scales on level length scales is

introduced into (C 2) by substituting B = A2/3. In this case, that equation has no
closed-form solution. As in § 3.2.3, the approximation inherent in the derivation
of C 2 is avoided by solving (3.2) for Pk using the same initial and boundary
conditions as for the viscous-range solution.
The basis of Richardson scaling of HiPS dispersion is indicated by rewriting

BkdT in (C 1) as dS, where S = BkT is a similarity variable that subsumes the
dependence of the time advancement on both T and k. The separation distance
corresponding to separation index k is L0A

Nt−k so the inertial-range ansatz B =
A2/3 that introduces the length-scale dependence of the eddy rate into (C 1)
imposes Richardson similarity by construction.

Appendix D. Analysis of mixing in a three-level tree

The HiPS flux, production, and dissipation are evaluated directly for a three-level
tree. Refer to table D1.
Let the four parcels have initial values (0, 0), (1, 1), where parentheses indicate

half-trees, giving ∆ϕ0 = 1. Only level-0 swaps are possible. With equal likelihood,
a swap is either jump-periodic (JP), corresponding to flux between hypothetically
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Table D1: HiPS state evolution for a three-level tree. Parentheses group parcel
values in half-trees. EE refers to an eddy event involving a swap of type

jump-periodic (JP) or internal (I) followed by mixing of parcel pairs. Subscripts
on half-tree averages designate the different stages of evolution.

Initial state (0,0), (1,1)

⟨ϕ⟩0 0 1

⟨ϕ′2⟩0 0 0

First EE: I or JP I (applied to initial state) JP (applied to initial state)

After swap (0, 1), (0, 1) (-1, 0), (1, 2)

After mixing ( 1
2
, 1

2
), ( 1

2
, 1

2
) (− 1

2
, − 1

2
), ( 3

2
, 3

2
)

⟨ϕ⟩1 1
2

1
2

− 1
2

3
2

⟨ϕ′2⟩1 1
4

1
4

1
4

1
4

Next EE: I or JP JP I JP I

After swap (− 3
2
, 1

2
), ( 1

2
, 5

2
) ( 1

2
, 1

2
), ( 1

2
, 1

2
) (− 1

2
, − 1

2
), ( 3

2
, 3

2
) (− 1

2
, 3

2
), (− 1

2
, 3

2
)

⟨ϕ⟩2 − 1
2

3
2

1
2

1
2

− 1
2

3
2

1
2

1
2

⟨ϕ′2⟩2 5
4

5
4

1
4

1
4

1
4

1
4

5
4

5
4

After mixing (− 1
2
, − 1

2
), ( 3

2
, 3

2
) ( 1

2
, 1

2
), ( 1

2
, 1

2
) (− 1

2
, − 1

2
), ( 3

2
, 3

2
) ( 1

2
, 1

2
), ( 1

2
, 1

2
)

⟨ϕ⟩3 − 1
2

3
2

1
2

1
2

− 1
2

3
2

1
2

1
2

⟨ϕ′2⟩3 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⟨ϕ⟩3 − ⟨ϕ⟩1 -1 1 0 0 0 0 1 -1

⟨ϕ′2⟩2 − ⟨ϕ′2⟩1 1 1 0 0 0 0 1 1

⟨ϕ′2⟩3 − ⟨ϕ′2⟩2 -1 -1 0 0 0 0 -1 -1

Repeat, I or JP EE . . .

adjacent domain boundaries, or internal (I), corresponding to flux across the
domain center. A JP swap adds ±2 to the scalar value of each parcel deemed to
exit and re-enter the domain, where the direction of displacement determines the
sign of this adjustment. We can ignore permutations within a half-tree without
loss of generality.
This three-level model implementation has distinctive features that do not

apply to cases with four or more levels. Each eddy event produces one of two
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distinct final system states: (1/2, 1/2), (1/2, 1/2), or (-1/2, -1/2), (3/2, 3/2),
which are uniform and nonuniform, respectively. Starting from either of the two
states, the system state is uniform after a type-I event and nonuniform after a
type-JP event. The half-tree mean values ⟨ϕ⟩, and variances ⟨ϕ′2⟩ after each of
swap and mixing operations comprising the eddy event are shown in the table.
⟨ϕ′2⟩ is computed as the mean square difference between the parcel values in the
half-tree and the imposed ensemble mean value (0 or 1) in the half-tree. An eddy
event preceded by an eddy event of the same type produces no state change.
In effect, the system evolves only when two events of different type occur in
succession, so the evolution consists of switches from one state to the other.
Consider the flux through the domain center, arising from internal swaps. These

result in ⟨ϕ⟩3 − ⟨ϕ⟩1 equal to 0 or -1 in the right half-tree, and 0 or 1 in the
left half-tree. The average time between internal swaps is 2τ0, so the average
d(⟨ϕ⟩3 − ⟨ϕ⟩1)/dt in the right half-tree is −1/(4τ0). Use of the reasoning in § 3.3
recovers the nondimensional flux of −1/8, equation 3.9.
The production P is the average rate of change of variance due to swaps,

which happen at mean rate 1/τ0. This production is given by the mean (over
the four columns of table D1) of (⟨ϕ′2⟩2−⟨ϕ′2⟩1)/τ0 = 1/(2τ0), which recovers the
nondimensional production of 1/2 that is shown in (3.13).
Similarly, ⟨χ⟩ is the negative of the average rate of change of variance due to

mixing occurrences, which happen at mean rate 1/τ0. This dissipation is given by
the mean (over the four columns of table D1) of −(⟨ϕ′2⟩3 − ⟨ϕ′2⟩2)/τ0 = 1/(2τ0),
which recovers the nondimensional dissipation value 1/2, equation 3.14.

Appendix E. Phenomenological basis of the dissipation PDF shape

A simple abstraction of HiPS advancement is formulated that crudely mimics
HiPS phenomenology while providing analytical tractability. Note first that the
type-JP swap (see Appendix D) preserves scalar deviation from the mean rather
than the scalar value per se, analogous to the corresponding DNS boundary con-
dition. For mathematical simplicity, periodicity is relaxed here and an individual
Lagrangian parcel is deemed to perform a simple random walk with step size unity
on a 1D domain while preserving the scalar value rather than the scalar deviation.
This recasts the top-level JP swaps as purely advective displacements. With each
step, the parcel scalar deviation Φ relative to an imposed mean scalar gradient
of unity changes by ±1. After each step a mixing operation is performed with
probability 1/2 based on independent Bernoulli trials. If mixing is done, the parcel
is mixed toward the local mean value by multiplying Φ by a fixed factor h < 1
that subsumes all HiPS mixing phenomenology in a simple parameterization.
Important features of the resulting Φ statistics are captured for the case h = 0,
which is simpler to analyze than finite h so h = 0 is considered. For this case,
the PDF of χ is defined to be the continuum limit of the histogram of Φ2 values
immediately before mixing events.
The probability of n > 0 displacements between successive mixing events is

P (n) = 2−n. The Φ value is n+ − n−, denoting positive and negative steps
respectively. In the large-n limit, random walk theory gives

P (Φ|n) =
√

2

πn
exp

(
−Φ2

2n

)
.
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Now treating Φ and χ as continuous variables and recognizing that both positive
and negative Φ contribute to given χ = Φ2, the appropriate change of variables
is applied to obtain

P (χ|n) =

√
2

πnχ
exp

(
− χ

2n

)
,

P (χ) =
∞∑

n=0

P (χ|n)P (n) ≈

√
2

πχ

∫ ∞

0

2−n−(1/2) exp
(
− χ

2n

)
dn.

For large χ, the Laplace method gives the leading-order χ dependence P (χ) ∝
χ−1/2 exp[−(2χ ln 2)1/2]. This is a simple demonstration of the origin of the
stretched exponential times χ−1/2, showing how randomly sampled instantaneous
displacement and mixing events in a geometrically minimal setting can capture
nontrivial features of turbulent scalar transport and mixing.
The analysis is conceptually analogous to a Lagrangian path integral in that

the appropriately weighted average over all Lagrangian histories is evaluated,
albeit lacking the local and global conservation constraints that a treatment based
on fluid mechanics would impose. HiPS incorporates an internally consistent
abstraction of those constraints, possibly accounting for the accuracy of the HiPS
value of the stretch exponent.
The derived functional form of the large-χ PDF tail is likewise obtained for

finite h, albeit through more complicated analysis. h might serve as a useful
parameterization of, e.g., Sh dependence, possibly broadening the physical inter-
pretation of figure 6.
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