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Abstract
We improve the One-Dimensional Turbulence (ODT) model formulation for turbulent channel and pipe flows.
A substantial part of the work is focused on the use of the temporal ODT (T-ODT) formulation with potential
applicability to a broader range of confined flows. We present novel guidelines for the selection of the T-ODT
model parameters. Additionally, we introduce a modification of the spatial ODT (S-ODT) formulation in
order to be able to simulate confined flows using a conservative Lagrangian finite volume method (FVM).
The proposed S-ODT confined flow formulation allows constant flow rate (CFR) forcing-like schemes, and
thus, imposition of a fixed bulk flow Reynolds number Reb in constant property flows. Most engineering
flows of relevance are steady CFR-driven flows, which highlights the relevance and applicability of the
proposed confined flow S-ODT formulation. We validate the modified S-ODT formulation by comparing
it with T-ODT results for statistically steady channel and pipe flows, and with available Direct Numerical
Simulation (DNS) data from the literature. We find, for both formulations, reasonable agreement for the
mean flow. Second-order flow statistics involving normal components of the Reynolds stress tensor exhibit
moderate deviations from DNS data. Nonetheless, transport-term contributions to the TKE transport equation
are reasonably predicted. We find evidence of a well-defined logarithmic layer arising in the ODT model.
Our results also suggest that the model performance improves for larger Reynolds number flows, consistent
with the model representation of turbulence phenomenology.
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1 INTRODUCTION AND RELEVANCE OF THE RESEARCH

Although the canonical channel and pipe flow configurations have been studied extensively, there are still numerous issues in the
field of wall-bounded flows which have not been properly addressed. Such fundamental issues play an important role in a variety
of applications ranging from niche topics in aerodynamic drag, to widely applied topics in heat generation and transport, e.g.,
relevant for today’s energy transition. Detailed discussions regarding the current state of the art on wall-bounded flow research
have been presented, e.g., by Marusic et al. [1]. Persistent open questions focus on the structure and scaling of wall turbulence at
very large Reynolds numbers. An example of an unresolved issue is the existence and universality of different regions in the
mean velocity profile, among others, the so-called logarithmic region, see [2].

The most detailed comprehensive studies of the mean velocity characteristics for turbulent pipe and channel flows have been
carried out in the past by Direct Numerical Simulations (DNS) such as [3, 4, 5, 6, 7], as well as experiments, see [8, 9, 10, 11].
DNS faces important limitations due to computational costs. In terms of the spatial discretization, DNS costs scale with the cube
of the flow Reynolds number. As an example, in low Mach constant properties fixed pressure gradient (FPG) driven flows, the
wall-normal resolution is given by the friction Reynolds number Reτ = δ/δη, which indicates the ratio between the boundary
layer thickness δ (outer length-scale of the flow, e.g., a pipe radius or a channel half-height), and the viscous length-scale δη , the
latter being comparable to the Kolmogorov length-scale of the flow. In comparison to DNS, experimental studies are usually

Abbreviations: ODT, One-Dimensional Turbulence; DNS, Direct Numerical Simulation.
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limited by measurement technology and accuracy. Experimental studies at large Reynolds numbers, just like DNS, are also
confronted with spatial resolution issues, see [9]. Although research and development of emerging and necessary technologies
would benefit from the information and accuracy delivered either by DNS or detailed experimental work, the reality is that these
methodologies are expensive and not easily accessible. This is, conversely, the business case for turbulence modeling, usually
represented by model families such as Reynolds-Averaged Navier-Stokes (RANS) or large eddy simulations (LES). In general,
RANS and LES are filter-based approaches, in which only smooth signals are represented in a coarse numerical domain.

There is an inherent compromise in terms of accuracy when using turbulence models. The rationale for their application
being that limited accuracy is better than no information in little-to-unknown flow regimes, e.g., large Reynolds number flows.
Additionally, if the dynamics of the small scales are well understood and accurately modeled, to the best possible extent, the use
of turbulence models can allow parametric studies and optimization procedures which would otherwise be unfeasible using only
DNS or experiments. Representative examples of turbulence models are typical industrial RANS or very large eddy simulations
(VLES) utilizing linear eddy viscosity models. In said models, the Reynolds stress is related to the filtered or averaged velocity
gradient using a turbulent diffusivity (gradient-diffusion or Boussinesq hypothesis), see [12]. Inner layer laws are usually
prescribed as part of the model constraints in wall-bounded flows, such that the numerical simulations involve mostly the outer
layer of the mean flow [13, 12]. This shows an important issue in typical RANS or VLES; namely, that the correct solution
generally depends on the prescribed law of the wall, e.g., the logarithmic law.

It is not trivial to solve the modeling problem without the specification of laws of the wall or gradient-diffusion approaches,
but there are some valid alternatives. Data-driven statistical modeling based on the benefits of machine learning (ML) has gained
recent attention. Several studies can be mentioned in this regard, e.g., [14, 15, 16]. The focus of our work, however, is not on
data-driven approaches, but in map-based turbulence models. The use of mappings as a formal way to treat advective processes
in turbulent flows can be traced back to the parallel development of two models: the first one is the Lagrangian vortex method
for the simulation of solenoidal inviscid flows [17], and the second one is the set of generalized lattice map-based vorticity and
advection-diffusion mixing models [18, 19]. Observations on stretching and folding of vortex lines, as well as the related use of
maps, can also be traced back to observations and mechanisms suggested by Reynolds himself as a description for fluid mixing
[20]. We contextualize the discussion to the One-Dimensional Turbulence (ODT) model, which uses a specific type of mapping,
a triplet map, in order to represent turbulent transport in a 1-D domain, see [21]. Modeling of turbulent transport in this way has
the advantage of delivering a representation of the Reynolds stress as a result of an ensemble average of said mappings, such that
the inconvenient prescription of laws of the wall is no longer necessary. The compromise, to that extent, could be generalized as
being the same associated to any turbulence model, i.e., the inherent empiricism portrayed in the form of model coefficients.
Although the local and instantaneous velocity field represented in the ODT domain is naturally not equivalent to a fully resolved
3-D DNS velocity field, related statistical moments of any order (e.g., mean flow and variance of velocity fluctuations) can be
represented without extensive modifications to the model formulation.

There have been several publications regarding the application of ODT on different flow scenarios, see [22, 23, 24, 25, 26].
Having said that, model applications are still in its infancy when compared with RANS, LES, or even data-driven approaches.
There are, so far, no clear relations between ODT model parameter constants and usual physical quantities of interest, e.g., in
classical wall-bounded flows such as channel or pipe flows. Another relevant issue in ODT is the inherent one-dimensional
character of the model, and the limitations this poses when the representation of elliptic flow effects is desired, such as 2-D or
3-D flow development, recirculation, separation, among others. Low Mach number variable density pipe flow development was
discussed in [27], utilizing the so-called temporal and spatial ODT formulations. Notably, flow development aspects were better
captured with the help of the spatial formulation, e.g., better representation of near-wall gradients and wall-normal turbulent flux
profiles in the streamwise direction, see [27]. However, the improved performance of the spatial formulation was achieved at the
expense of a non-conservative numerical method implementation. This is inconvenient, since it contravenes the precepts of the
Lagrangian finite volume method (FVM) used in all other adaptive-grid ODT publications.

In this paper, we revisit the application of the ODT model in turbulent pipe and channel flows. In Section 2, we summarize
the most relevant features and capabilities of the existing temporal and spatial ODT (T-ODT and S-ODT) model formulation.
Section 2 also introduces a novel S-ODT modification which allows the simulation of confined developing flow, utilizing a fully
Lagrangian FVM. This remediates the non-conservative properties of the numerical method proposed in [27]. Section 3 details
the numerical configuration, as well as the characterization of the statistically steady channel and pipe flow study cases to be
discussed. Novel guidelines for the selection of the ODT model parameters are suggested in Section 4. The guidelines relate
some model parameters to usual physical quantities of interest for statistically steady turbulent channel and pipe flows. Results
of the selected study cases are discussed in Section 5, in the context of first and second-order velocity statistics for a likewise
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selected range of Reynolds numbers. ODT results are compared with available DNS data from the literature. Finally, some
concluding remarks are provided in Section 6.

2 OVERVIEW OF THE ODT MODEL

The appealing feature of the ODT model is its simplified representation of scalar turbulent transport, i.e., scalar advection by
small-scale turbulence. The representation is best understood as the effect that a notional turbulent eddy would have on a 1-D
scalar profile. That is to say, ideally, a triplet map of said 1-D scalar profile, see [28, 21]. The triplet map involves threefold spatial
reduction or compression of a given property profile within some specific eddy range [ξ0, ξ0 + l]. Hereby, ξ0 is the representative
coordinate of the left edge of the map, and l is the representative length scale of the map, i.e., the model representation of the
size of a turbulent eddy. The mapping functions describing the planar and cylindrical triplet maps are detailed in Appendix A.1.
Triplet maps are sampled following a stochastic process.

In the absence of friction, and of any other body force, the measure-preserving property of the triplet map for a flow defined
by a 1-D velocity field guarantees conservation of momentum and kinetic energy [21]. The missing dissipation of kinetic energy
due to viscous shear, which is characteristic of turbulent flow, is incorporated in ODT through an operator split method. During
the time intervals between implemented mappings, 1-D transport equations for scalars are numerically integrated in a DNS-like
fashion.

The majority of published ODT model applications to date have relied on the T-ODT formulation, in both Cartesian (planar)
and cylindrical coordinates, see [22, 23, 24, 29, 26]. In the following, we give an overview of the most relevant aspects of the
existing T-ODT formulation, focusing on low Mach number flows with constant fluid properties.

2.1 T-ODT formulation

In the T-ODT formulation, the notional ODT domain, or line-of-sight through the turbulent flow, is assumed to capture the
time-dependent behavior of a flow, which is statistically homogeneous in directions normal to the numerical domain. The
time-dependent behavior is given by the time-integration of 1-D scalar transport equations punctuated by the implementation of
stochastically sampled (in time) triplet maps. Mappings are required in order to modify the otherwise 1-D laminar flow which
would result from the advancement of the scalar transport equations. Modeled statistical moments of the turbulent flow in the
1-D numerical domain are obtained as a result of the ensemble average of stochastically implemented mappings. The stochastic
sampling of maps is discussed in Section 2.1.1, while the form of the applicable 1-D transport equations in ODT is discussed in
Section 2.1.2.

Figure 1 shows a sketch of the typical T-ODT flow for the streamwise velocity component of a channel and a pipe flow, in
Cartesian and cylindrical coordinates, respectively. In Cartesian coordinates, the 1-D domain can be considered a 1-D stack in
wall-normal direction y, of arbitrary length and width ∆z and ∆x, respectively. The flow is assumed homogeneous in streamwise
and spanwise directions, z and x, respectively, such that the magnitudes of ∆x and ∆z are not relevant, and can always be
factored out from the formulation.

In cylindrical coordinates, the 1-D domain consists of ring sectors of small arc length r∆θ, of arbitrary angular displacement
∆θ, and arbitrary length ∆z. We note the treatment of the apparent geometrical singularity at the pole (r = 0) in cylindrical
coordinates. This relies on the utilization of the typical domain mapping function r → r̂ which is commonly used in DNS, see
[30, 31]. That is,

r̂ =

{
r if 0 ≤ θ < π,

–r if π ≤ θ < 2π
(1)

The flow variables mapped to r̂ follow the identities concerning sign reversal derived in [31]. The purpose of this is to allow
continuous and two-sided radial derivatives around r̂ = 0, see [31]. Similar to the planar Cartesian formulation, the cylindrical
ODT formulation assumes homogeneity of the flow properties in the streamwise z and tangential θ directions. The only
exception are inhomogeneities in θ which correspond to potential asymmetries around the pole. These can only be caused by
implementation of triplet maps for which ξ0 < r̂ = 0 < ξ0 + l.

For the sake of generality, we will use from now on a coordinate system represented by a position vector s = [ψ, ξ, z]T , where
{ψ = x, ξ = y} and {ψ = θ, ξ = r̂} for Cartesian and cylindrical coordinates, respectively. Note that ξ = 0 corresponds to the
centerline coordinate in Cartesian coordinates (y = 0), and the pole coordinate (r̂ = 0) in cylindrical coordinates, respectively.
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F I G U R E 1 T-ODT flow configuration in Cartesian (left) and cylindrical coordinates (right). Note that 0 < t1 < t2 < t3. We
utilize uniform zero initial conditions for the velocity field u(ξ, t = 0) = 0. H and D denote the height and diameter of the channel
and pipes, respectively.

This implies, according to Figure 1, that walls are located at ξ = ±δ. The associated velocity vector for this generalized coordinate
system is noted as u = [w, v, u]T .

2.1.1 T-ODT eddy events

In the following, we consider a vector velocity field providing information of the flow seen in the 1-D domain of Figure 1.
Notation-wise, considering constant density, the generalized representation of v-advective transport is ξ–m∂(ξmvu)/∂ξ, noting m
as an integer which takes the value m = 0 (and thus, ξm = ξ0 = 1) in Cartesian coordinates, and m = 1 in cylindrical coordinates.
The turbulent contribution to such advective flux can be represented in ODT by the following transformation

M(u, ξ, te) + K(u, ξ, te) : u(ξ, te) → u(f (ξ), te) + c(u, te,α)K(ξ) (2)

The sum of the operators M +K is given by the corresponding transformation of u in Eq. (2). The operators M and K symbolically
represent the added effects on u of the triplet map f (ξ) and a so-called kernel function K(ξ), respectively. The kernel function is
defined as K(ξ) = ξ – f (ξ). Likewise, c is a uniform kernel coefficient (vector). From now on, we refer to the set of operations
described by Eq. 2 as a candidate eddy event in ODT. An ensemble average operation of stochastically sampled and implemented
eddy events models the effects of small scale turbulence on the statistical moments of the velocity field due to advective transport
and pressure transport. Note that the transformation given by Eq. (2) is supposed to occur at a given (discrete, sampled) time te.

Notwithstanding the measure-preserving property of the triplet map, the kernel function K(ξ) is introduced in Eq. (2), in order
to allow the transfer of kinetic energy from one velocity component to another, while guaranteeing simultaneous conservation of
momentum. This is the ODT treatment for vector velocity fields [32, 22, 29]. Loosely speaking, the kernel coefficients indicate
how much extractable kinetic energy contained in the mapping can be redistributed among velocity components following
isotropy or anisotropy considerations, see also [32]. Consequently, one (non-dimensional) model parameter, α ≤ 1, is introduced
to model the tendency of the pressure to restore isotropy on the absence of shear and body forces on incompressible flow, see
also [32]. This is the model representation of the pressure-scrambling effect on the Reynolds stress components for low Mach
number constant property flow. Details on the choice of α are given in section 4.1. Details of the procedure for calculation of c
are given in Appendix A.2.

Eddy events defined as per Eq. (2) are sampled following a stochastic process governed by three main parameters. These
parameters are the eddy position ξ0, the eddy size l, and the eddy rate distribution. The T-ODT eddy rate distribution λT is
defined as

λT(ξ, l, t) =
C
l2
∆t–1

l (ξ, l, t). (3)

Here, C is a non-dimensional proportionality coefficient, i.e., an ODT model parameter which scales the frequency of eddy
events ∆t–1

l (ξ, l, t). The frequency distribution ∆t–1
l (ξ, l, t) is modeled on dimensional grounds, in a way in which it can be
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related to the flow state for any given eddy range [ξ0, ξ0 + l]. As a model parameter, C introduces empiricism into the ODT
model, and thus, requires calibration based on some reference data.

As per Eq. (3), the sampling of eddy events in ODT is done from an instantaneous distribution which continually evolves
with the state of the flow [33]. This inherent ODT feature distinguishes it from several other stochastic turbulence models,
as well as other subgrid closures from filter-based turbulence models which rely on so-called equilibrium assumptions [12].
In principle, λT defines the eddy rate for a time-dependent flow-state. Integration of all possible rates leads to the mean rate
Λ =

∫ lmax

lmin

∫ 2δ
0 λdξ0dl, where lmin and lmax are bounds for all possible eddy event sizes. Clearly, λT and Λ define a probability

density function (PDF) for eddy events ϕl, such that ϕl = λT /Λ, see [21]. Said PDF allows stochastic sampling using a Poisson
process. Sampled eddies could then be implemented with probability Pa,T,P = Λ∆tsamp, or rather, Pa,T,P = λT∆tsamp/ϕl, given that
∆tsamp = (χΛ)–1 is chosen with a constant χ > 1 such that Pa,T,P < 1. This is a thinning method for reconstruction of ϕl, see [29].

In practice, it is highly inconvenient to reconstruct ϕl due to the large computational overhead implied by the need of
evaluation of all possible flow states at all times required for the calculation of Λ. Since Λ (or more generally ϕl) is unknown,
another more readily available PDF ϕ∗l = h(l)g(ξ0) is used instead of ϕl, in combination with a rejection method, see [33, 34, 22].
Hereby, h(l) and g(ξ0) are presumed PDFs for the size and position of eddy events, respectively, see also [33]. In this way, the
acceptance probability Pa,T,R = ϕl/(βϕ∗l ) decides implementation of candidate eddy events by the rejection method, considering
β as a constant such that Pa,T,R < 1. The final, resulting acceptance probability combining the thinning and rejection methods is
obtained as Pa,T = Pa,T,PPa,T,R, absorbing β into the magnitude of ∆tsamp, such that

Pa,T(ξ0, l, t) =
λT(ξ0, l, t)∆tsamp

h(l)g(ξ0)
(4)

We remark that h(l) and g(ξ0) are presumed PDFs, although their exact form is not relevant, see also [33]. Bounds of h(l) are
set by length-scales lmin and lmax. On the one hand, lmin is set by the Kolmogorov length-scale, or, conversely, the viscous length
scale δη . On the other hand, there are no clear physical guidelines for lmax (unless it is known a priori), although it is bounded by
the size of the numerical domain lmin < lmax ≤ 2δ. Further considerations on lmax will be discussed later in Section 4.4.

The eddy event frequency (∆tl)–1, which is required for the evaluation of the corresponding eddy rate λT as per Eq. (3), is
modeled on dimensional grounds using kinetic energy, see [22, 29, 34]. We focus on constant property flows and determine
(∆tl)–1 as follows

(∆tl)–1 =

√√√√ 2∫ ξ0+l
ξ0

K2ξmdξ
K0

[
K0

ρ

(
Q · 1

)
–

Z
2
η2

l2

∫ ξ0+l

ξ0

ξmdξ

]
(5)

We have defined the kinematic viscosity η = µ/ρ as usual, given by the ratio between the (constant) dynamic viscosity µ and the
(constant) density ρ. Similarly, we note the scalar product operator for vectors {·}, the ones-vector 1 = [1, 1, 1]T , and the factor
K0 defined as

K0 =
1

l2
∫ ξ0+l
ξ0

ξmdξ

∫ ξ0+l

ξ0

K2ξmdξ (6)

The factor K0 converges to 4/27 in the continuous limit of the planar eddy event formulation, see [33, 34]. The available kinetic
energy per velocity component Q, which has dimensions of energy per unit of base area (∆x∆z) in Cartesian coordinates, and
of energy per unit length and angular displacement (∆z∆θ) in cylindrical coordinates, is defined in Appendix A.2. In this
context, Q · 1 is the total available turbulent kinetic energy. Note that we have also introduced another non-dimensional ODT
model parameter in Eq. (5), the viscous penalty coefficient Z. The model parameter Z must be calibrated alongside C based on
available reference data. In wall-bounded flows, Z generally acts as a tuning parameter for inherent 3-D buffer layer or outer
layer dynamics (or their effects on the flow statistics), which cannot be properly represented by ODT [21, 35]. The viscous
penalty imposed by Z may lead to imaginary values of ∆tl. These candidate eddy events are not implemented. Otherwise, the
implementation of sampled candidates is decided after calculation of their acceptance probability Pa,T by Eq. (4) and a Bernoulli
trial. In the usual ODT implementation, ∆tsamp is adjusted dynamically, such that the moving average Pa,T (defined over a
suitable time window) adjusts to a very small input value (we use 0.02).

2.1.2 T-ODT deterministic advancement (governing equations for numerical integration)

Next, we discuss the form of the 1-D transport equations required for the numerical time-integration step which follows every
implemented eddy event in ODT. This discussion also follows existing T-ODT formulations, and in particular, formulations
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relying on the use of a dynamically adaptive grid, see [32, 22, 29]. From now on, we will refer to the numerical time-
integration step as the ODT deterministic advancement process. In this context, we note that the numerical simulation time
always corresponds to the accumulated time from the stochastic eddy event sampling procedure. Therefore, the numerical
time-integration of the transport equations always catches up to implemented eddy events, which is why we also reference
alternatively the ODT deterministic advancement process as a deterministic catch-up process (to eddy events).

For consistency of the presentation of this work, which is dedicated to a conservative FVM for ODT, we write the conservation
equations in an integral form. Mass conservation in a finite volume cell is written as∫

∆Ω

∂ρ

∂t
dΩ + ∆ψ∆z (ξmρvR)

∣∣∣∣ξc+∆ξ/2

ξc–∆ξ/2

= 0 (7)

Integrals are understood over a finite volume cell ∆Ω = (∆ξm+1∆ψ∆z)/(m + 1). Note also that dΩ = (dξm+1∆ψ∆z)/(m + 1),
whereas ξmdξ = (m + 1)–1dξm+1. The second term in Eq. (7) is evaluated at both edges of the 1-D finite volume cell. We reference
∆ξ as the distance between the 1-D cell edges, and ξc as the mid-point of the corresponding 1-D cell. We defer a discussion of the
FVM discretization scheme and numerical method to A.3. Note that we have intentionally used vR in Eq. (7), the relative velocity
between the fluid and the (analysis) system boundary, in order to refer alternatively to Eulerian and Lagrangian frameworks for
familiarity. In an Eulerian framework, where the (analysis) system boundary is at rest, vR is nonzero, and Ω refers to a (fixed)
Eulerian control volume. In a Lagrangian framework, or a material T-ODT cell volume, vR = 0, since the system boundary moves
with the velocity of the fluid. The Reynolds transport theorem (RTT) relates Eq. (7) to its Lagrangian form, which is written as

d
dt

∫
∆ΩL

ρdΩ = 0 (8)

Besides the remark that ∆ΩL ≠ ∆Ω, since ∆ΩL is now the Lagrangian (material) cell volume, we stress that vR is also different
from the wall-normal velocity v. Specifically, v models the 3-D velocity field in ODT. That is to say, similar to u and w, v is
responsible for deciding upon implementation of eddy events in ODT via Eq. (5). However, vR, or rather ρvR, is the mass flux
associated to the system of 1-D transport equations, and as such, it can only be related to (pure) 1-D flow, e.g., compression or
expansion of the Lagrangian (material) cell volume.

ODT formulations in previous publications usually consider a Lagrangian ODT domain and utilize a dynamically adaptive
grid, see [22, 29]. Since we will also resort to the use of a dynamic grid adaption strategy, we focus our discussion on the
Lagrangian form of all transport equations, e.g., Eq. (8) for mass conservation. For the case of the constant property turbulent
channel and pipe flows at discussion in this work, given that ρ is a constant, Eq. (8) leads to a Lagrangian cell volume of constant
size. Thus, Eq. (8) is automatically enforced for a given initial discretization of the numerical domain (at the beginning of a
time-step), without the need of further operations.

In order to formulate the integral law for momentum conservation, it is important to discuss the role of the hydrodynamic
pressure in low Mach number constant property flows, see [36]. Usually, in DNS of fixed pressure gradient-driven (FPG-driven)
turbulent pipe or channel flows, the hydrodynamic pressure is decomposed onto a mean and a fluctuating pressure gradient. The
mean pressure gradient is only non-zero in the streamwise direction. It balances the wall shear stress, and it is imposed as a
uniform source term –dp/dz on the streamwise momentum equation, see [37, 38, 39]. This has also been done in existing T-ODT
formulations, see [22, 26]. Fluctuating pressure effects relevant for turbulent flow, such as the pressure scrambling effect, are
not modeled in the deterministic ODT advancement process, but instead as part of the ODT eddy events as detailed in Section
2.1.1. Thus, there is no need for a pressure gradient term in the wall-normal momentum equation. Following the same mass
conservation logic, we note that momentum fluxes (due to velocity advection) entering or leaving the material ODT cell volume,
are not explicitly represented in a Lagrangian conservation law since vR = 0. Considering constant density, and the fixed form
of the Lagrangian finite volume cell ∆ΩL = (∆ξm+1∆ψ∆z)/(m + 1), the integral form of momentum conservation can then be
written as

d
dt

∫
∆ξ

uξmdξ =
∫
∆ξ

(
–

1
ρ

dp
dz

ez

)
ξmdξ +

(
ξmη

∂u
∂ξ

) ∣∣∣∣ξc+∆ξ/2

ξc–∆ξ/2

(9)

We used ez = [0, 0, 1]T to indicate the unit vector aligned with direction z. The first integral term on the right-hand side (RHS)
corresponds to the FPG term imposed as a momentum source for u. The second term on the RHS is the usual viscous flux
difference between cell edges valid for a vector velocity field in 1-D planar Cartesian coordinates. Although we use the vector
formulation in Cartesian coordinates (channel flows), we only resort to the use of a single velocity component formulation in the
specific case of cylindrical coordinates (pipe flows). This is discussed in the context of the choice of the ODT model parameter
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F I G U R E 2 S-ODT flow configuration in Cartesian (left) and cylindrical coordinates (right). Note that 0 < z1 < z2 < z3. Inlet
conditions for the velocity field are set to uniform profiles u(ξ, z = 0) = [0, 0, Ub]T . H and D denote the height and diameter of
the channel and pipes, respectively.

α for cylindrical coordinates in Section 4.1. In the cylindrical, single component formulation, v = w = 0, and therefore, extended
vector forms of the viscous flux for cylindrical coordinates such as those derived in [27] are not necessary.

We recall that the sole numerical integration of Eq. (9) through an entire ODT simulation without implementation of eddy
events, necessarily leads to a numerical solution representing a pure 1-D (laminar) flow. For uniform initial conditions, said
numerical solution satisfies symmetry conditions around ξ = 0, such that asymmetries (around ξ = 0) can only arise due to
implementation of eddy events. In the case of the cylindrical ODT formulation, eddy event implementation may lead to a
numerical integration step for flow profiles which are asymmetric around the pole r̂ = 0. Said situation is a unique feature of the
cylindrical ODT formulation, since such asymmetries are incompatible with the implied axisymmetric assumption of standard
1-D cylindrical (r-dependent) transport equations. This completes the description of the T-ODT formulation. Further details on
the FVM discretization scheme and numerical method can be found in Appendix A.3.

2.2 S-ODT formulation

There have been several previous studies relying on spatial ODT (S-ODT) formulations, see [22, 27, 29, 34, 40]. In general,
S-ODT is a quasi-2-D approximation of a statistically steady flow. Such an approximation can be achieved by relying on
inherently quasi-2-D governing equations, such as those corresponding to the parabolic partial differential equations (PDEs)
applicable for boundary layer-like flows. In S-ODT, the statistically steady flow seen in the ODT line, experiences inhomogeneity
in the streamwise direction due to eddy events, see Figure 2. This implies a streamwise marching logic, which is similar to the
numerical schemes used to solve the quasi-2-D PDEs for statistically steady boundary layer-like flows; the difference being
that streamwise advancement is punctuated in S-ODT by eddy events, similar to how temporal advancement is punctuated by
T-ODT eddy events. Following this logic, a static 2-D flow snapshot can be recovered after one simulated S-ODT realization.
Similar to T-ODT, one deterministic advancement process is always carried out catching up to implemented eddy events.

Initial conditions in S-ODT can be referenced as inlet conditions for the streamwise position z = 0. Owing to the random
occurrences of eddy events that punctuate z-advancement, multiple realizations utilizing similar inlet conditions may produce
an ensemble of static pictures, allowing flow statistics to be gathered. For fully developed flows which can also be considered
statistically streamwise homogeneous or invariant, fluctuation statistics may also be gathered by averaging over the streamwise
interval of statistically invariant advancement during one simulated realization.

In the following, we briefly review the most relevant aspects of existing S-ODT formulations, such as those presented in
[22, 27, 29, 34, 40]. The formulation in [27] was the first attempt of an S-ODT formulation applicable for confined flows, since
previous formulations were only applicable for unconfined systems with spatially uniform far-field flows, e.g., boundary layers,
jets or mixing layers, see [34]. In such cases, the S-ODT domains allowed outgoing or ingoing mass fluxes at their endpoints.
This is not physically consistent in the presence of walls at the endpoints of the S-ODT domain. Hence, a modified treatment
is necessary to ensure correct balancing of momentum fluxes (due to advection by the streamwise velocity component) with
the simultaneous enforcement of balanced (streamwise) mass flux in the numerical ODT domain. This is achieved only in an
approximate sense in [27] through the use of non-conservative Lagrangian differential equations in the S-ODT deterministic
advancement process. In an attempt to harmonize the confined flow S-ODT formulation of [27] with previous integral Lagrangian
(conservative, FVM-based) S-ODT formulations, we discuss a modified confined flow S-ODT treatment in Section 2.2.3.
However, for ease of understanding, we discuss next the eddy event sampling procedure, as well as the form of S-ODT PDEs
corresponding to existing conservative Lagrangian FVM forms published in the literature (for unconfined flows).
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2.2.1 S-ODT eddy events

Next, we review the most relevant aspects of eddy event implementation in existing S-ODT formulations to date. We consider
infinitesimal volume differentials of the form dΩ = ξmdξdz∆ψ = (m + 1)–1

(
dξm+1dz∆ψ

)
. All flow properties are inhomogeneous

in directions ξ and z, and assumed homogeneous solely in direction ψ. The exception, as in T-ODT, are inhomogeneities in
cylindrical coordinates due to asymmetries around the pole. Since S-ODT is a 2-D flow approximation, intuition may lead to
believe that S-ODT conservation laws should observe 2-D material cell volumes, in analogy with the 1-D material cell volumes
used in the T-ODT formulation. This is not the case. S-ODT is best interpreted instead as a streamwise array of wall-normal 1-D
Lagrangian, semi-material domains. In this context, every Lagrangian ODT domain in the streamwise array can only deform
in the wall-normal direction as in a fully material T-ODT domain. As in Eq. (7), this implies vR = 0 in every Lagrangian cell
volume. However, it is also necessary to discuss an additional streamwise relative velocity between the fluid and the Lagrangian
ODT cell volume in the S-ODT conservation or balance laws, uR. The latter is necessarily nonzero, and in fact, we need to
consider uR = u, given that the ODT domain (a 1-D domain) can not observe streamwise deformation. Thus, each streamwise
ODT domain in the array (and each cell volume within it) deforms in wall-normal direction, in order to allow incoming and
outgoing streamwise mass fluxes. As in the numerical solution of boundary layer-like parabolic flows, streamwise marching
schemes demand that each streamwise array member at a position zn+1 is determined by its upstream neighbor at position zn.

S-ODT eddy events are sampled stochastically in the streamwise direction z as part of the streamwise marching scheme. Each
S-ODT eddy event can be defined by its associated operators M and K, and the corresponding transformation rule in analogy to
Eq. (2),

M (u, ξ, ze) + K (u, ξ, ze) : u (ξ, ze) → u (f (ξ), ze) + c (u, ze,α) K(ξ) + b (u, ze,α) J(ξ). (10)

In contrast to T-ODT, S-ODT conservation laws observe exact numerical balance of flow rates (of mass, momentum, and energy)
due to associated fluxes caused by streamwise advection attributed to uR = u, see [34]. For isothermal and constant density flows,
triplet mapping of scalar profiles can only guarantee an exact balance (before and after mapping) of streamwise mass flux, as per
the measure-preserving properties of the map. Triplet mapping alone is unable to balance momentum fluxes due to streamwise
advection for each velocity component or kinetic energy fluxes due to streamwise advection (before and after mapping). Thus,
kernel functions K(ξ) and J(ξ) = |K(ξ)|, as well as associated kernel coefficients (vectors) c and b, respectively, are introduced
in order to satisfy the additional constraints of enforcement of i) balance of the momentum flux due to streamwise advection
together with ii) balance of the kinetic energy flux due to streamwise advection, considering kinetic energy transfer between
velocity components as in the vector T-ODT formulation (see also [34, 41]). The calculation of the constant coefficients c and b
in S-ODT is defined in Appendix A.2.

As mentioned, modification of the velocity components as per Eq. (10) during S-ODT eddy events, enforces simultaneous
balance of pre- and post-mapped momentum and kinetic energy fluxes (including kinetic energy transfers between velocity
components). However, existing S-ODT formulations do not incorporate enforcement of streamwise mass flux balancing in the
procedure for determination of c and b, see [34, 22, 41]. Instead, the constraint on the streamwise mass flux is performed as a
corrector step upon modification of the Lagrangian ODT domain volume, after the transformation given by Eq. (10). This is an
issue for confined flows which exhibit physical walls at the edges of the numerical domain, and it was remediated in [27] at the
expense of a non-conservative deterministic advancement process. We discuss this issue as part of the modified treatment for the
confined flow S-ODT formulation introduced in Section 2.2.3.

In order to complete the specification of S-ODT eddy events, we define the counterpart of λT from T-ODT, which can be
redefined as a spatial eddy density function,

λS(ξ0, l, z) =
C
l2
∆z–1

l (ξ0, l, z). (11)

The eddy streamwise (turnover) length-scale ∆zl(ξ0, l, z) is defined in a very similar way to the eddy turnover time in T-ODT.
However, S-ODT conservation laws for spatially developing flows are expressed in terms of streamwise fluxes, see [34]. Thus,
the eddy streamwise (turnover) length-scale ∆zl(ξ0, l, z), or rather, the eddy streamwise (turnover) wavenumber (∆zl)–1(ξ0, l, z),
is calculated as

(∆zl)–1 =
1
ul

√√√√ 2∫ ξ0+l
ξ0

uK2ξmdξ
K0

[
K0

ρ

(
Qu · 1

)
–

Z
2
η2

l2
ul

∫ ξ0+l

ξ0

ξmdξ

]
. (12)

In this case, Qu is the available kinetic energy-flux per velocity component due to streamwise velocity advection, which has
dimensions of power per unit width (∆x) in Cartesian coordinates, and of power per unit angular displacement (∆θ) in cylindrical
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coordinates, see Appendix A.2. The eddy-averaged velocity ul is calculated for constant density as

ul =

∫ ξ0+l
ξ0

uξmdξ∫ ξ0+l
ξ0

ξmdξ
(13)

In analogy with T-ODT, considering now a streamwise sampling interval ∆zsamp, the implementation of sampled candidate
eddy events in S-ODT is decided upon calculation of the acceptance probability Pa,S,

Pa,S(ξ0, l, z) =
λS(ξ0, l, z)∆zsamp

h(l)g(ξ0)
(14)

2.2.2 S-ODT (deterministic) governing equations

As previously commented, the quasi-2-D S-ODT formulation is best interpreted as a streamwise array of wall-normal ODT
(semi-material) domains which describe a statistically steady flow modified by the discrete implementation of eddy events in
some of the domains, i.e., at some streamwise positions. The eddy events, thus, modify the otherwise steady quasi-2-D (laminar)
boundary-layer-like flow. Similar to [34, 22, 29], we can write the integral mass conservation law for the Lagrangian S-ODT cell
volume as

d
dz

(∫ zn+1

zn

∫
∆ξ(z)

ρuξmdξdz
)
∆ψ = 0, which simplifies to

(∫
∆ξ(z)

uξmdξ
) ∣∣∣∣zn+1

zn

= 0 (15)

The second expression is obtained after cancellation of integral and differential operators, as well as due to the constant density
assumption and constancy of ∆ψ. The resulting integral on the second expression is evaluated at both upstream (initial) and
downstream positions zn and zn+1, respectively. Unlike the T-ODT material cell volume which remains with a fixed size in
constant density flows, the Lagrangian S-ODT (semi-material) cell volume will usually exhibit some degree of deformation
in the wall-normal direction. The deformation is due to the changes in the inhomogeneous u(ξ) velocity profile between the
upstream (initial conditions, directly after the implementation of an eddy event) and downstream positions, due to streamwise
marching (deterministic advancement) of the momentum flux (due to streamwise advection). This is an important property
of S-ODT domains, and it corresponds to the ODT representation of the lateral flows which are induced by streamwise flow
development, as in previous, conservative, FVM-based S-ODT publications, see [22, 29, 34].

For confined flows, there can not be any inflows or outflows through the walls that reside at the domain boundaries. In
practical terms, from a Lagrangian perspective, the overall size of the S-ODT domain can not change; local fluid parcels (or finite
volume cells) may deform, but the sum of all fluid parcel deformations along the domain must be zero. This is a confinement
constraint associated with zero (normal) mass flux at the 1-D domain boundaries. From now on, we will refer to this constraint
and its enforcement as a conservative flux confinement enforcement (FCE) step. In general, the FCE is then equivalent to an
imposed (streamwise) constancy of the global (domain-integrated) mass flow rate, or of the streamwise mass flux, in a domain of
fixed-size 2δ. This makes the confined S-ODT formulation ideal for internal steady flows observing constant flow rates (CFR),
which greatly extends model applicability. For constant density, the FCE step implies constancy of the domain-integrated bulk
velocity Ub. Before commenting further on the FCE step, we detail the integral momentum conservation law of the S-ODT
formulation, assuming constant density. This takes the same form as in [22, 29, 34],(∫

∆ξ(z)
uuξmdξ

) ∣∣∣∣zn+1

zn

=
∫ zn+1

zn

(
ξmη

∂u
∂ξ

) ∣∣∣∣ξc+∆ξ/2

ξc–∆ξ/2

dz (16)

There are some relevant nuances concerning Eq. (16). In principle, the quasi-2-D formulation allows the inclusion of shear due
to velocity gradients in both streamwise and wall-normal directions. Preserving the shear term due to streamwise gradients of
velocity, however, although seemingly consistent, would lead to an elliptic PDE. It is not clear how this would affect eddy event
sampling, given that in an elliptic context, both upstream and downstream conditions would influence eddy sampling. This is the
reason why S-ODT formulations traditionally follow parabolic flow assumptions in which shear due to streamwise gradients can
be considered negligible, see [34]. This is also, as previously mentioned, consistent with standard boundary layer approximations.
These approximations are reasonably valid for the type of flows at discussion here, enabling flow development or changes in the
context of a streamwise marching scheme. Similar reasoning favoring parabolic flow assumptions prevents the need to solve
elliptic Poisson-like pressure equations, such that pressure gradients, if included, should be provided a priori. Nonetheless, due to
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the use of inlet conditions, inclusion of any FPG source term is omitted, as it is customary for 3-D DNS utilizing inlet-outlet-like
boundary conditions (BCs). As in T-ODT, the wall-normal pressure gradient is also omitted from the momentum balance law.
Fundamentally, the overall role of the pressure can be understood in terms of the enforcement of mass conservation, or of the
velocity divergence condition, as it is typical for low Mach number flows. This is discussed next in the context of the FCE step.

2.2.3 Enforcement of mass conservation and of the confinement constraint (modifications
required for confined flow S-ODT)

During the streamwise advancement of statistically stationary zero pressure gradient (ZPG) boundary layer-like flows, the wall
shear stress balances, on average, the inertial streamwise acceleration. In S-ODT, there may be momentum imbalances due to
wall-stress fluctuations induced by the ODT advection process. These imbalances would be responsible for variations of the
global mass flow-rate, or alternatively, variations of the bulk velocity Ub in constant density flows. Nonetheless, S-ODT confined
flow balance laws mandate that the global (domain-integrated) streamwise mass flux of fluid at any z agrees exactly with the
inlet value due to Eq. (15). Even pure streamwise marching of Eq. (16) on the absence of turbulent transport (eddy events), and
considering a fixed volume, does not satisfy this requirement. The exception being that Eq. (15) is used as an additional constraint.

In general, the z-dependent cross-section of a (semi-)Lagrangian S-ODT volume Ac(z), i.e., (m + 1)–1∆ψ∆ξm+1(z) for a
certain fluid parcel or finite volume cell, is determined by Eq. (15) after advancement of Eq. (16). Solution of (15) for Ac after
advancement of Eq. (16) follows an operator split rationale. This is similar to pressure projection schemes, and introduces a
numerical error proportional to the size of the streamwise step ∆z. In this context, given that momentum advancement is only
part of the operator split approach, advancement of Eq. (16) is performed considering a fixed cross-sectional area of the finite
volumes. Solution of Eq. (15) for all individual fluid parcels or finite volume cells, considering streamwise marching between
coordinates zn and zn+1 (∆z = zn+1 – zn), yields afterward a change in the area Ac(zn) → A∗

c (zn+1),

A∗
c (zn+1) =

u(zn)Ac(zn)
u∗(zn+1)

. (17)

Here, we used u∗ to indicate the streamwise velocity field at coordinate zn+1 resulting from advancement of Eq. (16). Only
upon deformation of the net Lagrangian cross section ΣAc(zn) → ΣA∗

c (zn+1) is it possible to obtain a desired constancy of the
global (domain-integrated) mass flow-rate, which is given by the streamwise velocity component. Note that the aforementioned
procedure for deformation of the Lagrangian volume is also considered after S-ODT eddy events, as part of the correction
procedure post-Eq. (10), in order to enforce pre- and post-map balance of the global streamwise mass flux, and thus, the constancy
of the global mass flow-rate. So far, this procedure is the usual one involved in the S-ODT formulation for unconfined flows, e.g.,
applicable in particular to a round turbulent liquid jet issuing into a vacuum (here meaning the low-density limit of the ambient
fluid), see [34, 22, 29]. Note that the Lagrangian deformation procedure Ac(zn) → A∗

c (zn+1) involves displacement of the fluid
parcel interfaces. As such, transport associated to the Lagrangian volume deformation can be considered to be of advective nature.

Usually, unconfined flows rely on the use of homogeneous Neumann BCs for Eq. (16). As a consequence, the streamwise
velocity responsible for streamwise mass flux shows only a reduced distinctive region of the numerical domain, in which
the unconfined flow is different from the free-stream (irrotational) flow. This is also the region of interest for integrated
streamwise mass flux, such that uniform free-stream flow regions may be clipped out, as it is done in existing unconfined flow
formulations, see also [34, 22, 29]. Having said that, imposition of homogeneous Neumann BCs on Eq. (16) is inconsistent
with the physically correct no-slip BCs demanded by confined flows, and it is also inconsistent to clip out regions of a confined,
fixed-size wall-bounded domain. As a way to remediate this problem, we introduce a subsequent correction on the mass flow-
rate ρu∗(zn+1)A∗

c (zn+1). This is the novel FCE corrector step. The FCE step introduces a correction on the cross-sectional area
A†

c (zn+1) = ΓA∗
c (zn+1), and on the streamwise mass flux ρu†(zn+1) = ρu∗(zn+1)/Γ, where Γ is a correction factor. Consequently, the

specific advective accelerations, or inertial forces, undergo a change from ρu∗(zn+1)u∗(zn+1)A∗
c (zn+1) to ρu†(zn+1)u∗(zn+1)Ac(zn+1),

such that there is no change on the (cell-)local mass flow-rate. The correction factor Γ takes the form

Γ =
∑

cells Ac(zn)∑
cells A∗

c (zn+1)
(18)

In plain terms, Γ is a uniform correction applied for all fluid parcels or finite volume cells, which aims at preserving the size of
the 1-D domain. In this context, the sum over all cross-sectional cell areas is always constant and equal to the cross-sectional
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area of the confined domain,
∑

cells Ac(zn) =
∑

cells A†
c (zn+1) = ΓA∗

c (zn+1). Simultaneously, this enforces streamwise constancy of
cell-local and global (domain-integrated) streamwise mass flux (or alternatively, of Ub).

All of the aforementioned operations have an advective character, and have accomplished the goal of enforcing the fixed size
of the confined domain, as well as the constancy of the streamwise mass flux, such that no (wall-normal) mass fluxes occur at
the domain boundaries. The cross-sectional cell areas A†

c (zn+1), crosswise (or radial) v∗(zn+1), spanwise (or tangential) w∗(zn+1),
and streamwise velocities u†(zn+1) can then be associated to the final flow properties of the corresponding downstream ODT
domain at zn+1. This is the model equivalent of the enforcement of a formal 2-D divergence condition on the velocity field. One
final issue remains for the full description of the FCE step. For the u velocity component, the FCE step implies a source of
momentum flux. Said source is the equivalent streamwise pressure gradient acting on the flow, which is missing from Eq. (16).
To that extent, the momentum flux finally changes from ρu†(zn+1)u∗(zn+1) to ρu†(zn+1)u†(zn+1). This modification is interpreted
as the outcome of a streamwise forcing that, in the absence of a prescribed pressure gradient, should on average correspond
to the physically correct FPG if the FCE step accurately represents the interaction of the confinement and CFR constraints
with the flow dynamics. This is advantageous because ODT is then applicable to flows that are characterized only in terms
of their prescribed bulk velocities, fluid properties, and confinement geometry. On one hand, T-ODT constant property flows
are then best suited for an FPG-type of forcing in the type of confined setup at discussion here, implying the imposition of
a fixed Reτ (although CFR-type forcings could also be used as in [40]). On the other hand, S-ODT confined flows are best
described with CFR-type forcings, which imply the imposition of a fixed bulk Reynolds number Reb = 2Ubδ/η. These and other
such interesting issues for discussion motivate our choice to focus on constant property flows. Notwithstanding our deliberate
choice, the T-ODT and S-ODT formulations presented here can also be straightforwardly applied for flows with shear-depending,
variable viscosity. Another readily obtainable extension is that of thermally coupled buoyant flows observing small temperature
and density fluctuations (Boussinesq approximation). Other processes leading to dilatation such as thermal expansion could also
be incorporated in the formulation in the future, by consideration of the related additional mass flux sources, further extending
the applicability of the model. This completes the description of the FCE step. Numerical implementation details for the S-ODT
formulation can be found in Appendix A.3. Note that additional dynamic mesh adaption operations characteristic from the
dynamic grid formulation, see [22], may introduce deviations on the global integrated momentum and energy fluxes resulting
from concurrent eddy event implementation and subsequent deterministic numerical integration step. Sufficient care must be
exercised to that extent, as explained in Appendix A.4.

3 NUMERICAL SIMULATION INPUTS: FLOW CONFIGURATION, INITIAL AND
BOUNDARY CONDITIONS

We have carried out channel and pipe flow simulations using both T-ODT and S-ODT model formulations. Table 1 lists the
simulated cases. The majority of the cases investigated correspond to T-ODT flows. S-ODT flows are only evaluated in cases
550CS and 550PS, which imposed Reb = 20000 and Reb = 19000 in a turbulent channel and pipe flow, respectively. The limited
number of S-ODT cases is due to significantly longer simulation times (clock time) involved in the computation of several
converged flow statistics. This is explained by the added complexity of the numerical advancement scheme in S-ODT, as well as
the number of statistical turbulent fluxes which are evaluated for verifying the conservativeness of the numerical method, see
Appendices A.3 and A.5. In this context, the S-ODT flow evaluation performed in this work only seeks an understanding of the
model formulation and its features, and does not intend an extensive parametric study.

In all evaluated cases, the flow configuration is a 1-D domain which follows the sketches in Figures 1 and 2. The only BCs
required are those for the velocity field u, which are the usual no-slip conditions at the edges of the 1-D domain (walls). T-ODT
simulations utilize uniform zero initial conditions for the velocity field u(ξ, t = 0) = 0, and rely on the use of a constant forcing
term dp/dz on the momentum equation in order to impose a given Reτ (FPG forcing). Conversely, S-ODT simulations rely on
the use of uniform inlet conditions u(ξ, z = 0) = [0, 0, Ub]T , which impose a given Reb (CFR forcing).
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T A B L E 1 Investigated cases. Values reported as approximate are not imposed on the simulations; rather, they are estimated
with the help of skin friction coefficients Cf reported from various sources of reference data [5, 6, 42, 43, 44, 45, 46, 47].

Case m (Geometry) Reτ Reb T-ODT/S-ODT ∆ξ+
min Forcing U+

b =
√

2/Cf

180CT 0 (Channel) 180 ≈ 5714 T-ODT 0.167 FPG ≈ 15.698
395CT 0 (Channel) 395 ≈ 14147 T-ODT 0.166 FPG ≈ 17.908
550CT 0 (Channel) 550 ≈ 20000 T-ODT 0.165 FPG ≈ 18.382
590CT 0 (Channel) 590 ≈ 22050 T-ODT 0.165 FPG ≈ 18.685

1000CT 0 (Channel) 1000 ≈ 40000 T-ODT 0.167 FPG ≈ 19.666
2000CT 0 (Channel) 2000 ≈ 87300 T-ODT 0.167 FPG ≈ 21.539
5200CT 0 (Channel) 5200 ≈ 250000 T-ODT 0.167 FPG ≈ 24.121

10000CT 0 (Channel) 10000 ≈ 522000 T-ODT 0.167 FPG ≈ 25.888
180PT 1 (Pipe) 180 ≈ 5300 T-ODT 0.167 FPG ≈ 14.641
360PT 1 (Pipe) 360 ≈ 11700 T-ODT 0.167 FPG ≈ 16.205
500PT 1 (Pipe) 500 ≈ 17000 T-ODT 0.167 FPG ≈ 17.161
550PT 1 (Pipe) 550 ≈ 19000 T-ODT 0.167 FPG ≈ 17.273

1140PT 1 (Pipe) 1140 ≈ 44000 T-ODT 0.167 FPG ≈ 19.356
2000PT 1 (Pipe) 2000 ≈ 82500 T-ODT 0.167 FPG ≈ 20.700
3000PT 1 (Pipe) 3000 ≈ 133000 T-ODT 0.167 FPG ≈ 21.666
6000PT 1 (Pipe) 6000 ≈ 285000 T-ODT 0.167 FPG ≈ 23.369
10000PT 1 (Pipe) 10000 ≈ 509000 T-ODT 0.167 FPG ≈ 24.624
550CS 0 (Channel) ≈ 550 20000 S-ODT 0.165 CFR 18.182
550PS 1 (Pipe) ≈ 550 19000 S-ODT 0.165 CFR 17.271

4 CHOICE OF THE ODT MODEL PARAMETERS

Usual empiricism of turbulence models associated with model coefficients is portrayed in ODT by the sensitivity of results to
the choice of the model parameters mentioned in Section 2.1.1 and 2.2.1. These are, namely, α, C, and Z. In addition to these
three conceptual model parameters, the parameter lmax, the chosen upper truncation of the eddy distribution as introduced in
Section 2.1.1, may also bias the statistics resulting from the eddy event sampling procedure. Furthermore, we note that, despite
not having been discussed in ODT publications so far, there is one last parameter of interest in ODT, Atf, which is relevant for
implementations relying on the dynamic adaptive grid strategy from [22]. The latter is precisely our case. We stress that Atf is
related to the numerical diffusion caused by the mesh adaption process.

In the following, we discuss first the effect of the three parameters which are theoretically relevant in the ODT formulation,
α, C and Z. The parameters lmax and Atf are considered to be more closely related to numerical effects than to the conceptual
formulation. As such, these are discussed later. Table 2 details all of the chosen model parameters for the geometries of interest
(m = 0, m = 1).

T A B L E 2 ODT model parameters used in numerical simulations. The values for the model parameters C and Atf may be
listed as C(Reτ ) and Atf(Reτ ), respectively, in the case that said parameters exhibit Reynolds number dependence (see Eq. (23),
(24), and (25) in text).

m (Geometry) T-ODT/S-ODT Reτ α C Z lmax Atf

0 (Channel) T-ODT [180, 10000] 2/3 C(Reτ ) 400 δ 25.0
0 (Channel) S-ODT ≈ 550 2/3 8 800 δ 25.0

1 (Pipe) T-ODT [180, 10000] 0 C(Reτ ) 400 2δ/3 Atf(Reτ )
1 (Pipe) S-ODT ≈ 550 0 6 800 δ 4.0
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4.1 Choice of α

As per Eq. (2) and (10), the ODT model parameter α is directly related to the calculation of the kernel coefficients c and b,
which are responsible for kinetic energy redistribution among velocity components during eddy events. We use α = 2/3 for our
turbulent channel flow simulations. This is an a priori theoretical choice implying a tendency to equally redistribute extractable
kinetic energy among velocity components. This is the usual choice in ODT publications relying on a vector formulation, see
[32, 22, 29].

For pipe flow simulations, or alternatively, cylindrical coordinates, we resort to α = 0. This is also an a priori theoretical
choice. The reasoning for this choice, which indirectly translates into a single velocity component formulation, is the following.
We utilize triplet maps as a way to model turbulent advection, i.e., a convective acceleration; together with the friction and
pressure forces, the convective acceleration due to turbulent advection, on the absence of mean wall-normal advection, conforms
with the net (inertial) acceleration affecting the momentum component involving rectilinear motion in cylindrical coordinates
(velocity component u). Conversely, a net (inertial) acceleration given by the sum of turbulent advection, friction and pressure
forces, as well as centrifugal and Coriolis-like accelerations, must be considered for the radial and azimuthal momentum
components in cylindrical coordinates (v and w). The centrifugal and Coriolis-like acceleration terms have been neglected so
far in published cylindrical ODT formulations. Although the effect of said terms should be small for the analysis of pipe flow
statistics, we retain the choice of α = 0, which forbids kinetic energy redistribution during eddy events, therefore constraining
the entire kinetic energy (and momentum) in our pipe flows to the streamwise velocity component u. Note that this assumption
relies on the utilization of uniform initial conditions for v and w of the form v = 0 and w = 0.

4.2 Choice of Z

Since α is chosen a priori, we consider C and Z, as the only effective ODT conceptual model parameters of interest. Recall
that C is a proportionality coefficient for the eddy rate as per Eq. (3) and (11). Conversely, Z is a small eddy event suppression
parameter which aims at modeling viscous effects in the eddy frequency formula, Eq. (5) and (12).

The calibration procedure for C and Z, as commented in Section 2.1.1, involves an optimization procedure relying on the
minimization of the deviation of flow statistics with respect to some reference data. We consider the mean velocity profile as
the reference statistical moment of velocity for the purpose of calibration. As such, we do not carry out a formal optimization
procedure. Instead, we carry out a sensitivity analysis of the mean velocity profile u+(y+) to different selected model parameter
values. From now on, we will refer to u+ as the viscous-scaled mean streamwise velocity, and to y+ as the viscous-scaled distance
to the wall. Specifically, u+ = u/uτ , where u(ξ) is the average streamwise velocity profile, and uτ =

√
τw/ρ is the friction velocity

defined with the help of the wall-shear stress τw = µ
∣∣(du/dξ)w

∣∣ (the subindex w indicating quantities evaluated at the wall).
Likewise, y+ = (δ – |ξ|)/δη is defined following the configuration sketches in Figures 1 and 2, and considering δη = η/uτ as the
viscous length scale. We consider, as a naive assumption, that the mean velocity profile offers only one metric for calibration,
e.g., the L1 or L2 norm of the ODT model prediction error. As a consequence, we may find several combinations of model
parameters, e.g., of C and Z values, which lead to similar results. Although this is not usually commented, previous unpublished
work from Klein and Schmidt show an example of this issue in the context of turbulent thermal convection [48].

We performed several simulations with the goal of evaluating sensitivity to the C and Z model parameters. It is important
to stress, based on findings from previous ODT publications such as [22, 26, 29], that values of C are in orders of magnitude
O(1), while values of Z are usually of order O(102 – 103) in simulated wall-bounded turbulent flows. It is also important to
note that optimal C and Z values may be different between T-ODT and S-ODT formulations. While being aware that several
combinations of C and Z may lead to equivalent results, we noticed that a certain choice of C yielded values of Z which could be
partly justified based on theory. To that extent, we show in Figures 3a and 3b, the effect of changing Z while keeping C = 7 in
T-ODT, case 590CT, on both the TKE production P+ and the mean velocity profile, respectively. Note that P+ = δηP/u3

τ , where P
is the dimensional TKE production, e.g., PODT, defined for ODT in Appendix A.5.

We focus next on an analysis for T-ODT simulations. It is remarkable that a change in Z has an almost negligible influence in
the form of P+ as seen in Figure 3a. Larger values of Z only cause a shift in the profile, specifically, a shift in the peak location
y+

P̂+ . DNS investigations have shown that y+
P̂+ ≈ 12 in both channel and pipe flows, and that y+

P̂+ remains constant for most ranges
of interest of Reτ , from moderate to large Reτ , see [49]. It is also worth noting that the asymptotic value of y+

P̂+ coincides with
the asymptotic viscous coordinate on which the viscous and turbulent stresses intersect, see also [49]. Such asymptotic value for
y+

P̂+ should be reached in our study in all investigated cases with the exception of 180CT and 180PT. This leads us to hypothesize
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(a) (b)

F I G U R E 3 ODT simulation results for case 590CT using values of Z ∈ {25, 60, 100, 200, 300, 400, 500, 600, 700, 800, 900}
and C = 7. (a) TKE production. (b) Mean velocity profile. DNS reference data from Moser et al. [42] is also shown for
comparison in both subfigures.

(a) (b)

F I G U R E 4 ODT simulation results for case 590CT using values of C ∈ {5, 6, 7, 8} and Z = 400. (a) TKE production. (b)
Mean velocity profile. DNS reference data from Moser et al. [42] is also shown for comparison in both subfigures.

that Z must be a Reynolds number independent parameter. It should also be the same for both channel and pipe T-ODT flows.
The effect on P+ is not seen if C is changed instead of Z, see Figure 4a. Concerning the mean velocity profile, a change of Z has,
on one hand, the effect of a shift in the start of the log-layer of the flow and, consequently, the form of the buffer layer; on the
other hand, it shifts in a parallel way the log-layer, see Figure 3b. Conversely, changing C does not seem to modify the start
of the log-layer. Instead, C seems to affect the entire outer layer of the flow, see Figure 4b. Use of C = 0 would prevent eddy
event implementation in ODT, resulting in the laminar solution seen in Figure 4b. A remarkable finding concerning Z is that the
optimal T-ODT value Z = 400 (obtained for C = 7 in case 590CT), yields an apparent start of the model-obtained log-layer at
y+ ≈ 20. The viscous coordinate can be obtained as the product (P̂/εP̂)y+

P̂+ ≈ 20, where (P̂/εP̂) is the ratio of TKE production
to TKE dissipation at the location of peak TKE production. The latter should also be fairly Reynolds number insensitive, and
it seems to be around 5/3 < P̂/εP̂ < 7/4, at least according to the information presented in [43, 5]. The model parameter Z is a
viscous penalty coefficient; as such, it is related to the TKE dissipation and viscosity. Thus, it is no surprise that it is connected
to the log-law form and potentially to the ratio P̂/εP̂. As commented in previous ODT publications such as [40], Z has the form
of the square of a Reynolds number, see also Eq. (5). In this context, it is truly remarkable that the optimal value of Z is precisely

Z =
[
(P̂/εP̂)y+

P̂+

]2
such that this coincides also with the square of the viscous coordinate (i.e., a local Reynolds number) of the
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apparent start of the model-obtained log-layer. Based on this reasoning, we fix the value Z = 202 = 400 according to the before
mentioned Reynolds number independent estimate, see Table 2.

The previous theoretical rationale is applicable to T-ODT flows, and in particular to Eq. (5). The value of Z in S-ODT flows
should be motivated by a similar logic, although the role of Z in S-ODT is slightly different according to Eq. (12), since fluxes
due to streamwise advection are considered for the calculation of the representative eddy streamwise length scale. We do not
elaborate further on this issue, since we consider it out of scope for this work. As noted, we do not perform an extensive number
of S-ODT simulations due to their significantly longer simulation clock times. We only note the following for the S-ODT cases
550CS and 550PS. Using a slightly larger value of C in comparison to T-ODT, a good value of Z is Z = 800. Remarkably, this is
simply twice the theoretical value deduced for the T-ODT formulation, see Table 2.

4.3 Choice of C

We now comment on the choice of C, the related proportionality coefficient for the eddy rate, also in the context of T-ODT flows.
A better visualization of the effect of the C model parameter is seen on the mean velocity profile shown with linear axes in
Figure 5a. Intuitively, C seems to be related to the associated value of Ub, the domain-averaged velocity. This is our rationale for
determining the optimal value of C, once Z is fixed as commented before. For all T-ODT cases in Table 1, we fixed Z and then
determined which value of C yielded the best match for the skin friction coefficient Cf = 2/U+

b
2, or conversely, of the viscous-

scaled bulk velocity U+
b . To that extent, C was changed unit-wise between simulations in the range C = 3 to C = 10. An improved

estimate was obtained by an interpolation between unit-wise values, i.e., the interpolation yielding the exact Cf for the given Reτ .
We stress that the values of Cf and U+

b for every case in Table 1 were obtained from various sources, ranging from DNS data
at low to moderate Reynolds numbers, to experimental correlations for large Reynolds numbers [5, 6, 42, 43, 44, 45, 46, 47].
Figure 5b shows different reference DNS values for U+

b as a function of Reτ , as well as the following power law regressions
which we have obtained for said reference values,

Channel flow U+
b = 7.579Re0.141

τ Reτ < 2000 (19)

Pipe flow U+
b = 6.617Re0.153

τ Reτ < 2000 (20)

We choose the threshold Reτ = 2000 to distinguish scaling laws for low and large Reτ . In this context, Figure 5b also shows the
log-law fits obtained for Cf (and consequently for U+

b ) in the studies from Zanoun et al. [45] and Pirozzoli et al. [6], for turbulent
channel and pipe flows, respectively. These fits are defined for large Reynolds numbers, specifically, for Reτ ≥ 2000,

U+
b = 2.711 ln

∣∣Reτ
∣∣ + 1, Channel flow fit obtained by [45] Reτ ≥ 2000 (21)

U+
b = 5.945 log10

∣∣Reτ
∣∣ + 1.227, Pipe flow fit obtained by [6] Reτ ≥ 2000 (22)

When fixed values of Z and C are maintained across Reτ , e.g., choosing C = 7 and Z = 400 in channels, or C = 5 and Z = 400
in pipe flows, this leads to deviations in the predicted value of U+

b when comparing with reference data, as seen in Figure 5b.
Since we choose to keep Z fixed due to partly theoretical justifications, it is necessary to adjust C as a function of Reτ , in order to
predict the correct U+

b . Having said that, Figure 6 shows precisely the necessary changes in C required in order to correctly predict
U+

b . We fit two power laws for C(Reτ ), in order to characterize the low-to-moderate Reynolds number range 180 ≤ Reτ < 2000
and the large Reynolds number range Reτ ≥ 2000. For T-ODT channels and T-ODT pipe flow simulations, these are,

T-ODT channel flow C(Reτ ) =

{
2.750Re0.133

τ 180 ≤ Reτ < 2000

6.666Re0.013
τ Reτ ≥ 2000

(23)

T-ODT pipe flow C(Reτ ) =

{
1.535Re0.174

τ 180 ≤ Reτ < 2000

3.742Re0.047
τ Reτ ≥ 2000

(24)

Two interesting issues can be analyzed from Eq. (19-22) and (23-24). First, there is no meaningful change in C for large
Reynolds numbers in T-ODT flows. That is, C remains approximately constant for Reτ ≥ 2000, as seen in Figure 6. Second, the
power law exponents for the dependence of C on Reτ for low to moderate Reynolds numbers are relatively close to the power
law exponents for U+

b in the same Reynolds number range. This supports our hypothesis regarding potential correlations between
C and the skin friction coefficient Cf for T-ODT channel and pipe flows.
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(a) (b)

F I G U R E 5 (a) T-ODT simulation results for the mean velocity profile of case 590CT using values of C ∈ {5, 6, 7, 8} and
Z = 400. DNS reference data from Moser et al. [42] is also shown for comparison. (b) Viscous-scaled bulk velocity U+

b evaluated
with different choices of the T-ODT model parameter C, either by adjusting it to coincide with reference data for U+

b or by
keeping it fixed. DNS reference data from various sources [5, 6, 42, 43, 44, 45, 46, 47] is shown for reference. Power-law fits of
the DNS reference data for Reτ < 2000, see Eq. (19) and (20) and log-law fits for Reτ ≥ 2000 according to Eq. (21) and (22),
are also shown for reference for both channel and pipe flow configurations.

F I G U R E 6 Required values for ODT model parameter C as a function of Reτ for appropriate prediction of U+
b in statistically

steady turbulent channel and pipe flows. The figure also shows the corresponding power law fits for turbulent channel and pipe
flows, according to Eq. (23) and (24), respectively.

Due to the limited number of S-ODT cases evaluated, we can not comment extensively on the choice of C for S-ODT flows.

To that extent, the chosen values for C from Table 2 are simply those values, which upon use of Z = 2
[
(P̂/εP̂)y+

P̂+

]2
≈ 800, yield

the adequate value of U+
b according to reference data.

4.4 Numerical effects associated with the choice of lmax

The choice of a large upper bounding value for the presumed eddy event PDF ϕ∗l , see Section 2.1.1, may lead to the occasional
sampling of very large eddy events which would exceed the momentum thickness of the flow. This disproportionately affects
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(a) (b)

F I G U R E 7 (a) Effect of eddy size distribution truncation parameter lmax on the mean velocity profile of a turbulent channel
flow, case 590CT. Effects are shown for lmax/(2δ) ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1}. Reference DNS data from [42] is also shown
for comparison. (b) Effect of eddy size distribution truncation parameter lmax on the mean velocity profile of a turbulent pipe
flow, case 500PT. Effects are shown for lmax/(2δ) ∈ {0.1, 0.2, 1/3, 0.5, 0.7, 0.9, 1}. Reference DNS data from [6] is also shown
for comparison.

turbulent transport, specially in the outer layer, see [32]. Previous studies have suggested fixed values for lmax ≤ δ, which,
together with optimal values for other ODT model parameters such as C, seem to yield a reasonable representation of the outer
layer, see [35, 41].

Sensitivity tests carried out within this work showed that the qualitative influence of lmax on the mean velocity profiles
was generally the same for all Reynolds numbers evaluated. As shown in Schmidt et al.[35], lmax affects the mean velocity
profiles for channel flows in the outermost region from the wall. This parameter was estimated to have an optimal value of δ in
[35]. Krishnamoorthy [41] also verified the influence of lmax on T-ODT pipe flows, estimating an optimal value of 2δ/3. For
consistency reasons, we use the same a priori optimal lmax values for T-ODT flows found in [35, 50, 41]. Qualitatively, lmax has
the same impact in both the T-ODT and S-ODT channel and pipe flow configurations. Generally speaking, larger values of lmax

promote more mixing close to the centerline, thus resulting in a flatter velocity profile near the centerline. Figures 7a and 7b
show the effect of different values of lmax on the mean velocity profile for T-ODT channel and pipe flows.

Although not shown here, we have also verified that the a priori choice of lmax = δ is appropriate in both S-ODT channel and
pipe flows in order to obtain reasonable mean flow statistics. Thus, we obtain better results in the S-ODT cylindrical formulation
using lmax = δ in comparison to the T-ODT cylindrical choice of lmax = 2δ/3. The choice lmax = δ also has the conceptual
advantage that it is the most physically intuitive one for the upper truncation of the presumed eddy event PDF.

4.5 Numerical effects associated with the choice of Atf

We remark that the deterministic catch-up process, which is characteristic of ODT, occurs every time an eddy event is implemented.
Additionally, deterministic catch-ups also occur after a relatively large amount of sampled increments are taken, which amount
to the magnitude of the step size given by the CFL criterion for explicit (time- or streamwise-) numerical integration. This
follows the operator split logic between the implementation of viscous effects and of turbulent advection in ODT. In dynamically
adaptive grid simulations, the (non-dimensional) parameter Atf works as a switch for mesh adaption after sufficient time (or
streamwise distance) has elapsed without eddy events being implemented. In plain terms, Atf refers to the number of CFL-
determined step sizes taken, without any eddy event implementation and only performing deterministic advancement, before a
procedure for mesh adaption takes place as detailed in [22].

Before proceeding with the discussion, we note the following considerations. First, it is more likely that successive deterministic
catch-ups occur at lower Reynolds number flows in comparison to larger Reynolds number flows, since fewer turbulent eddies
are expected at the former. Second, the T-ODT eddy frequency distribution (∆tl)–1, or the alternative S-ODT eddy streamwise
number distribution (∆zl)–1, exhibits lower values in the region around ξ = 0 due to (in average) smaller velocity gradients and
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(a) (b)

F I G U R E 8 (a) Effect of mesh adaption control parameter Atf on the mean velocity profile of a turbulent channel flow, case
590CT. Effects are shown for Atf ∈ {1, 2, 5, 10, 25, 50, 100}. Reference DNS data from [42] is also shown for comparison. (b)
Effect of mesh adaption control parameter Atf on the mean velocity profile of a turbulent pipe flow, case 500PT. Effects are
shown for Atf ∈ {1, 2, 4, 5, 10, 25, 50, 100}. Reference DNS data from [6] is also shown for comparison.

larger streamwise velocity values away from the wall. That is, on average, fewer eddies are sampled in regions away from the
wall in comparison to near-wall regions. These considerations imply that the mesh adaption process, and correspondingly, Atf,
have a larger numerical impact around the centerline and/or at low Reynolds numbers.

Operationally, we can define Atf as a ratio between the characteristic scale for adaption of the numerical domain ∆tA or ∆zA,
and the CFL-determined step size (due to diffusion) for explicit numerical integration ∆tCFL or ∆zCFL, for T-ODT and S-ODT,
respectively. Specializing to T-ODT, the mesh adaption procedure should be called if we exceed a threshold ∆tA > Atf∆tCFL.
In order to achieve statistical similarity across Reynolds numbers in the outer layer of the flow, that is, the flow region most
affected by mesh adaption, it is appropriate to scale ∆tA as δ/uτ . Conversely, ∆tCFL is equal or closely proportional to δ2

η/η,
where δη is the viscous length-scale (comparable to the Kolmogorov length-scale in wall-bounded flows) required for appropriate
representation of the entire turbulence length-scale bandwidth. Following this logic, Atf = ∆tA/∆tCFL scales linearly with Reτ , at
least for the alleged sensitive low Reynolds number flows. In this way, it is possible to relate the values of two different factors
Atf,1 and Atf,2 potentially associated with two different (low) Reynolds number flows Reτ ,1 and Reτ ,2,

Atf,2 = Atf,1
Reτ ,2

Reτ ,1
(25)

Figures 8a and 8b show the influence of Atf for channel and pipe flow T-ODT simulations. Qualitatively, the effect of increasing
Atf is similar to that of decreasing lmax, and similar to lmax, the effect is largest close to the centerline. The effect seems to be
mostly relevant for cylindrical pipe flows. We find the value Atf = 4 suitable for pipe flows at Reτ ≈ 500 (case 500PT) when the
previously discussed optimal values of C and Z are simultaneously used, see Figure 8b. For channel flows, we work with a larger
value, Atf = 25, which makes channel flows less sensitive to mesh adaption related issues. We attribute the scaling sensitivity in
ODT pipe flows to the characteristic radial stretching of the cylindrical system. The procedure for mesh adaption described in
[22] is based on an equal redistribution of arcs formed by property profiles. This may be inaccurate in cylindrical coordinates
due to the intrinsic stretching or r-weighting of property and flow profiles.

Figures 9a and 9b show the different contributions to the total stress in T-ODT channel (590CT) and pipe flows (500PT),
respectively, determined as indicated in Appendix A.5. Similarly, Figures 10a and 10b show the stress contributions in S-ODT
channel (550CS) and pipe flows (550PS). In this context, the sum M3

+ + T3
+ is equivalent to M3

+ + K3
+ as per Eq. (2), and refers

to the (viscous scaled) eddy event related contributions to streamwise momentum, including the kernel modification procedure.
This represents the model surrogate for the Reynolds shear stress gradient in T-ODT ∂u′v′

+
/∂y+. The term D3

+ is the streamwise
momentum contribution due to the deterministic numerical integration step. For T-ODT, this represents the sum of the FPG and
the viscous term, Re–1

τ + ∂2u+/∂y2,+, while in S-ODT, this is simply the viscous term ∂2u+/∂y2,+. The terms A3
+

and F3
+ refer to
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(a) (b)

F I G U R E 9 (a) Momentum contributions for the statistically stationary T-ODT turbulent channel flow, case 590CT.
(b) Momentum contributions for the statistically stationary T-ODT turbulent pipe flow, case 500PT.

(a) (b)

F I G U R E 10 (a) Momentum contributions for the statistically stationary S-ODT turbulent channel flow, case 550CS.
(b) Momentum contributions for the statistically stationary S-ODT turbulent pipe flow, case 550PS.

the advective and source-like contributions to momentum derived from the FCE step, as discussed in Section 2.2.3, see also
Appendix A.5. The sum M3

+ + T3
+ + A3

+
corresponds to the S-ODT model surrogate for the Reynolds shear stress gradient.

In statistically steady T-ODT flows, the advective contributions M3
+ + T3

+ and deterministic contributions D3
+ should balance

each other, up to numerical accuracy. For S-ODT flows, the balance is between advective contributions M3
+ + T3

+ + A3
+
, viscous

contributions D3
+ and source-like contributions F3

+. These balances also evidence the conservativeness of the numerical method.
Nonzero numerical balances (or imbalances) seen in Figures 9a-10b are attributable to numerical diffusion effects due to mesh
adaption, in this case represented by Atf. The cylindrical formulation is more sensitive to numerical diffusion due to the grid
adaption procedure. Similarly, the S-ODT formulation experiences much larger numerical diffusion due to Atf in comparison
to the T-ODT formulation. The larger S-ODT numerical diffusion due to grid adaption is explained by the current failure of
the S-ODT mesh adaption procedure for simultaneous conservation of streamwise mass flux, momentum flux and energy flux
in confined domains, see also Appendix A.4. The numerical diffusion is reduced for larger values of Atf, that is, less frequent
re-gridding. Since values of Atf increase for larger Reynolds number flows as per Eq. (25), it is expected that the numerical
diffusion effect is also reduced for larger Reτ .

We note the following after evaluation of both the mean flow statistics per Figures 8a-8b, and of the numerical conservativeness
per Figures 9a-10b. It is not possible to reconcile the best reasonable matching of the mean flow, e.g., the mean velocity profile,
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with appropriate numerical balance when the dynamic mesh adaption procedure is used in the T-ODT or S-ODT cylindrical
formulations (we do not show the S-ODT equivalent figures to 8a-8b here). A modification of the cell-merging operation during
mesh adaption is required. The issues are discussed in Appendix A.4, although remediation of said issues is out of scope in this
work.

All numerical simulation results to be presented next, unless otherwise noted, use calibrated values of Atf which yield the
best achievable mean flow statistics. For the cylindrical T-ODT formulation, the calibrated values of Atf scale as in Eq. (25)
for Reτ < 2000, using the reference value Arf,1 = 4 at Reτ ,1 = 500. The scaling range is chosen to correspond with the same
one of the model parameter C. All relevant ODT parameter values are listed in Table 2. In the cylindrical T-ODT and S-ODT
formulations, the chosen values of Atf yield non-negligible numerical diffusion which translates into numerical flux imbalances,
as seen in Figures 8a-8b, 9a-10b. Although the imbalances are small for Atf = 4 in the cylindrical T-ODT formulation at low
Reynolds numbers, they are quite large in the cylindrical S-ODT formulation (case 550PS). Selected results using large values of
Atf which ensure numerical flux balancing for cases 550PT and 550PS can be found in Appendix B.1.

5 NUMERICAL SIMULATION RESULTS

5.1 First order statistics (mean flow statistics)

We comment now on the usual mean flow statistics obtained with the calibrated ODT model parameters listed in Table 2. T-ODT
model results for the mean flow velocity profile of turbulent channel and pipe flow simulations are shown in Figure 11a with
comparison to reference DNS data. In all cases, there is good agreement between ODT model results and DNS reference data.
T-ODT model results for turbulent channel flow, specifically, exhibit, qualitatively, the best agreement among all layers of the
mean velocity profile, and across all of the different evaluated Reτ . In general, it is noted that T-ODT performs best throughout
the viscous sublayer and, seemingly, the logarithmic layer of turbulent channel flows (a linear profile is obtained for large y+ in
the semi-logarithmic plot for T-ODT turbulent channel flows).

Figure 11b shows a comparison of the mean velocity profile at the relatively low Reτ = 550 case, utilizing both T-ODT and S-
ODT model formulations. The agreement between both temporal and spatial formulations, and between model results and DNS
data is remarkable. As suggested by the theory and DNS data, the region of the outer layer of the mean flow closest to ξ = 0 in the
turbulent channel, is slightly different from that in the turbulent pipe at the relatively low Reτ = 550. This is most likely due to
the curvature effects associated with the cylindrical diffusion operator, which is still relevant for relatively low Reynolds number
flows. This feature is captured in both T-ODT and S-ODT model results as evidenced when comparing with DNS reference data.

We now comment on some observations which motivated the choice of the ODT model parameter Z in Section 4.2. Indeed,
we previously commented that the optimal choice of Z yields a peak location y+

P̂+ which coincides with the large Reτ asymptotic
value y+

P̂+ ≈ 12. In fact, at large Reτ , said value y+
P̂+ also coincides with the viscous intersection coordinate y+ at which the

(scaled) viscous and turbulent stress are equal (both taking a value of 0.5). In order to illustrate this issue, we show in Figures
12a and 12b, the viscous stress, turbulent stress, and TKE production profiles at two very different Reτ of 550 and 10000, for
turbulent channel and pipe flows. As before, the TKE production is defined for ODT according to Appendix A.5. Note that due
to numerical imbalances which may occur by the choice of specific values of Atf as explained in Section 4.5, we do not evaluate
here the Reynolds shear stress by numerical flux balancing as per Appendix A.5. Instead, we determine u′v′bal(ξ) by the mean
momentum balance of the statistically steady RANS turbulent channel or pipe flow equation. That is,

u′v′bal(ξ) =
1
ξm

[(
–

1
ρ

dp
dz

)(
ξm+1 – (–δ)m+1

m + 1

)
+ ξmη

du
dξ

– (–δ)m τw

ρ

]
(26)

In T-ODT, the pressure gradient dp/dz for use in Eq. (26) is the corresponding FPG. Conversely, for S-ODT, the equivalent
pressure gradient is determined by the resulting τw in a simulation, i.e., by the additional symmetric solution constraint
u′v′bal(ξ = 0) = 0 in the same Eq. (26).

According to Figures 12a and 12b, all ODT model results (T-ODT and S-ODT) yield a TKE production peak at approximately
y+

P̂+ ≈ 12, coinciding with the intersection of the turbulent and viscous stress, which we note as the viscous coordinate y+
vt.

Results for other intermediate values of Reτ different from 550 and 10000 are similar, and are not shown here. Due to the
reasonable agreement obtained between ODT and DNS mean flow velocity profiles, it is not a surprise that the ODT viscous stress
profiles also exhibit good agreement when compared with DNS reference data. Perhaps more illustrative is the representation
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(a) (b)

F I G U R E 11 (a) T-ODT mean velocity profiles for turbulent channel and pipe flow simulations (Cases 550CT, 550PT,
2000CT, 2000PT, 10000CT, and 10000PT). The profiles at larger Reτ are shifted upward 5 viscous units for better visualization.
(b) T-ODT and S-ODT mean velocity profiles for turbulent channel and pipe flow simulations at Reτ = 550 (Cases 550CT,
550CS, 550PT, and 550PS). DNS turbulent channel flow data from [5, 7], as well as DNS turbulent pipe flow data from [46, 6]
are shown for reference. Note that there is no DNS reference data for turbulent pipe flow at Reτ = 10000.

(a) (b)

F I G U R E 12 Visualization of: viscous stress or mean velocity gradient du+/dy+ (——, large symbols), Reynolds shear stress
u′v′

+
bal (— — — medium-sized symbols), and TKE production P+ (– – –, small symbols), all scaled in viscous units. The TKE

production is shown multiplied by 4 for better visualization. With the exception of the S-ODT peak P+, essentially all data
values overlap with the DNS data in the different profiles shown. DNS turbulent channel flow data from [5, 7], as well as DNS
turbulent pipe flow data from [46] are shown for reference. Note that there is no DNS reference data for turbulent pipe flow at
Reτ = 10000. The viscous coordinate y+ = 12 is also indicated with a vertical line · · · · · · for reference. (a) Reτ = 550 (Cases
550CT, 550CS, 550PT, 550PS). (b) Reτ = 10000 (Cases 10000CT and 10000PT).

of the Reynolds shear stress u′v′
+
bal seen in Figures 12a and 12b. Clearly, the ODT Reynolds stress representation for both

turbulent channel and pipe flows is very good, adequately reproducing the DNS data. Interestingly enough, the T-ODT pipe
flow representation of the TKE production converges to that of the T-ODT channel flow at larger Reτ , similar to how DNS
statistics of statistically steady turbulent channel and pipe flows converge for larger Reτ . For all cases, regardless of the (T-ODT
or S-ODT) model formulation, the TKE production representation agrees well with DNS data, although S-ODT model results
slightly overshoot the peak value P̂+ at the evaluated Reτ ≈ 550.
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Next, we discuss the evidence related to the presence of a logarithmic layer in the ODT model results. Usually, the
logarithmic law results from the integration of a dimensionless function Φ(y+, Reb) related to the velocity gradient by
du+/dy+ = (1/y+)Φ(y+, Reb). As y+ → ∞ and Reb → ∞, to a finite limit, Φ(y+, Reb) tends to the limiting value Φ(∞,∞) = 1/κ,
where κ is the von Kármán constant (usually taken as κ ≈ 0.4). The universal logarithmic law follows then from direct in-
tegration, see [51]. The product term y+du+/dy+ is known as the indicator function. If the similarity hypothesis for Φ holds,
then there should be a region in y+ along which the indicator function converges to the value 1/κ. We show the form of the
indicator function for different Reτ in Figures 13a and 13b, in inner and outer coordinate scalings, respectively. Note that inner
scaling coordinates are denoted by 0 ≤ y+ ≤ Reτ , while outer scaling coordinates are denoted by 0 ≤ (δ –

∣∣ξ∣∣)/δ ≤ 1, or by the
equivalent 0 ≤ y+/Reτ ≤ 1.

In DNS, the indicator function achieves a local minimum or plateau in inner-scaled coordinates, a region of constant 1/κ, most
notably at large Reτ for y+ > 60. This more or less coincides with the usually recognized start of the range of the log-law, see
[12]. This is true for both turbulent channel and pipe flows. Notably, turbulent pipe flows exhibit less of a region of constant
1/κ. Comparison with outer-scaled quantities confirms that there is indeed an approximate constancy of the indicator function,
also around the value 1/κ for all Reynolds numbers evaluated. For channel flows, the constancy at 1/κ ends approximately at
y+/Reτ ≈ 0.8, while the pipe flow range is shorter, ending approximately at y+/Reτ ≈ 0.3 for all Reynolds numbers evaluated,
see Figure 13b. We can claim that, overall, ODT turbulent channel flows exhibit a significantly longer logarithmic region in
comparison to the ODT turbulent pipe flows, similar to how DNS data of turbulent channel flows seem to exhibit a longer plateau
in comparison to DNS data of turbulent pipe flows. There are also no meaningful differences in the log-law representation
between T-ODT and S-ODT model results. Note that the clearest region of 1/κ constancy, as well as agreement of the ODT
indicator function results with DNS is obtained for the turbulent channel flow results at Reτ = 10000. This is an indication that the
model performance improves with increasing Reτ , and that the asymptotic logarithmic law is also most appropriate at large Reτ .

Note that T-ODT results for large Reτ , as well as S-ODT results in Figures 13a and 13b exhibit relatively large fluctuations
away from the wall. This is merely a result of insufficient averaging at the corresponding Reτ . Indeed, part of the inherent cost
of ODT is the relatively large number of ensemble members (in our case, large averaging time or large averaging streamwise
distance) required for converged statistics. Since this has no meaningful consequences in our analysis, we show the profiles with
the inherent fluctuations for illustrative purposes.

The region of largest disagreement seen in Figure 13b may be associated with the outer layer of the flow. This may be a
confusing result given the relatively good match between ODT and DNS data in Figures 11a, 11b, 12a, and 12b. However, note
that all of the before mentioned figures are shown as semi-logarithmic plots in which small errors are not that apparent. Errors in
the mean velocity gradient are also scaled up away from the wall, when a multiplication by the position takes place, such as in
the indicator function formula. The fact that the outer layer of the flow is not well represented in ODT at low or moderate Reτ is
to be expected, since the outer layer is dominated by large-scale, non-universal, bulk three-dimensional motion. This cannot be
easily captured by the reduced one-dimensional representation of the ODT model.

We now comment on the form of the model-obtained turbulent viscosity. To that extent, we recall the Boussinesq hypothesis
for turbulent flow, which defines the Reynolds shear stress in terms of the mean velocity gradient. In this context, the turbulent
viscosity can be defined as

ηt ≡ –
u′v′bal

du
dξ

(27)

Figures 14a and 14b shows the dimensionless (viscous scaled) turbulent viscosity in both inner and outer scaled wall-normal
coordinates. When using outer layer scalings in Figure 14b, an approximately constant region of turbulent viscosity is obtained in
DNS for y+/Reτ > 0.4. This would correspond to the outer layer of the flow, and more precisely, to Clausius’ precepts concerning
an approximately constant turbulent viscosity in the outer layer [52]. In contrast with DNS, ODT model results only show a
small region of approximately constant turbulent viscosity for y+/Reτ > 0.8 in turbulent channel flow. In ODT turbulent pipe
flow, there is no apparent constancy of the turbulent viscosity. Once again, there are no meaningful differences between T-ODT
and S-ODT results, with the exception of an apparent local maximum of the S-ODT pipe flow turbulent viscosity close to the
pole (r = 0). Overall, the outer layer turbulent viscosity is not reproduced as well as other statistical quantities evaluated so
far. As commented before, the shortcomings of the ODT model when predicting outer layer dynamics are not surprising. In
principle, the outer layer would be best captured by traditional RANS turbulence models with constant coefficients, since the
Boussinesq hypothesis would have full validity and applicability in such cases. In fact, the approximately constant region in
Figure 14b would correspond to well-known values of constant coefficients in RANS turbulence models, e.g., the coefficient
Cµ in the RANS k – ε model. Despite the apparent shortcomings in ODT, we note that a good representation of the turbulent
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(a) (b)

F I G U R E 13 Indicator function y+(du+/dy+) for different Reτ in turbulent pipe and channel flows (Cases 550CT, 550PT,
550CS, 550PS, 2000CT, 2000PT, 10000CT, 10000PT). Larger Reynolds numbers are shifted upward 5 viscous units for better
visualization. DNS turbulent channel flow data from [5, 7], as well as DNS turbulent pipe flow data from [46, 6] are shown
for reference. Note that there is no DNS reference data for turbulent pipe flow at Reτ = 10000. (a) Inner layer scaling in y+

coordinates. (b) Outer layer scaling in y+/Reτ = (δ –
∣∣ξ∣∣)/δ coordinates.

(a) (b)

F I G U R E 14 Scaled turbulent viscosity for different Reτ in turbulent pipe and channel flows (Cases 550CT, 550PT, 550CS,
550PS, 2000CT, 2000PT, 10000CT, 10000PT). Larger Reynolds numbers are shifted upward by 0.1 units for better visualization.
DNS turbulent channel flow data from [5, 7], as well as DNS turbulent pipe flow data from [46, 6] are shown for reference. Note
that there is no DNS reference data for turbulent pipe flow at Reτ = 10000. (a) Inner layer scaling in y+ coordinates. (b) Outer
layer scaling in y+/Reτ = (δ –

∣∣ξ∣∣)/δ coordinates.

viscosity is anyway obtained for a range of y+ values close to the wall (and said range increases with Reτ ). This is seen in Figure
14a, and confirms that ODT can be used as a near-wall turbulence model. One could think about potential applications in which
ODT is used as a near-wall model in constant coefficient RANS turbulence models (or in LES models), since the latter excel in
performance away from the wall. One example is the ODT subgrid closure used in [35].

5.2 Second-order statistics (TKE-related statistics)

We now discuss model results concerning TKE-related statistics. First, we discuss model results for root-mean-square (RMS)
velocity profiles. To that extent, Figure 15a shows T-ODT and S-ODT model results for u+

RMS, v+
RMS and w+

RMS profiles in the
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(a) (b)

F I G U R E 15 (a) RMS velocity profiles in turbulent pipe and channel flows at Reτ = 550 (Cases 550CT, 550PT, 550CS,
550PS) showing u+

RMS (——, large symbols), v+
RMS (- - - -, mid-sized and small symbols) and w+

RMS (- - - -, mid-sized and
small symbols). DNS turbulent channel flow data from [5], as well as DNS turbulent pipe flow data from [46] are shown for
reference. (b) RMS velocity profiles in turbulent pipe and channel flows at Reτ = 10000 (Cases 10000CT, 10000PT) showing
u+

RMS (——, large symbols), v+
RMS (- - - -, small symbols) and w+

RMS (- - - -, mid-sized symbols). DNS turbulent channel flow
data from [7] is shown for reference.

turbulent channel and pipe flow at Reτ = 550. The RMS velocity profiles are calculated by the corresponding Reynolds average
identity, e.g., uRMS =

√
u2 – u2, and are subsequently scaled by uτ . ODT turbulent pipe flow results only allow the evaluation of

streamwise velocity profiles since α = 0 for cylindrical coordinates. Conversely, ODT turbulent channel flow simulations allow
the evaluation of all RMS velocity profiles since α = 2/3, noting that, however, both vRMS and wRMS exhibit the same statistics.
This is seen in Figure 15a.

We note a shortcoming of the ODT model. Namely, regardless of the choice of α, the model is not able to properly represent the
anisotropy of the flow, or the different TKE contributions from the normal Reynolds stress components u2

RMS = u′u′, v2
RMS = v′v′,

and w2
RMS = w′w′. The obtained profile vRMS will always be equal to wRMS. It is interesting to note though, that the normal

Reynolds stress components are not considered for the modeling of the turbulent viscosity in the framework of the classical
Boussinesq hypothesis for turbulent flows. From this point of view, the representation of the mean velocity profile is not affected
by the deficient representation of the RMS velocity profiles, as we can evidence in all previously obtained results. Further
inspection of Figure 15a shows that T-ODT model results for turbulent channel and pipe flows deliver a double peak in the
streamwise u+

RMS profile, with a local minimum in-between peaks which has a coincident position with that of the DNS u+
RMS

profile maximum. The double-peak issue has been observed several times in previous ODT publications, see [22, 26]. In contrast
with T-ODT results, S-ODT results exhibit only a single peak in the u+

RMS profile at low Reτ = 550, although the position of
the (maximum) peak is different with respect to the DNS data. Therefore, one could argue that the S-ODT representation is
slightly better or more physically consistent near the wall. T-ODT and S-ODT model results for v+

RMS = w+
RMS profiles show that,

in general, v+
RMS is overestimated near the wall, and underestimated away from the wall, while w+

RMS is underestimated in the
entire wall-normal domain. In general, all TKE contributions are underestimated in the logarithmic and outer layer of the flow.

ODT pipe flow u+
RMS profiles lie above the corresponding ODT channel flow profiles. This may just be the effect of the ODT

model parameter α, which is different between channel and pipe flow simulations. Since α = 0 in ODT pipe flows, all of the
kinetic energy remains in the u velocity profile, and therefore, it is expected that said u+

RMS profile exceeds that in which TKE is
redistributed among other normal Reynolds stress components, i.e., the case α = 2/3 for channel flows. Figure 15b shows the
same RMS velocity profiles, but at the largest Reynolds number Reτ = 10000. There are no meaningful differences regarding
our previous observations at the lower Reτ . There is a slight artificial increase in the u+

RMS ODT pipe flow profiles near the pole
(r = 0). This effect is exaggerated and more noticeable when using larger values of the factor Atf which yield smaller numerical
diffusion effects due to mesh adaption, see Appendix B.1.

In addition to the TKE contributions due to the normal Reynolds stress components, we also evaluate the performance of the
ODT model with respect to the different transport terms in the TKE equation (TKE budgets). This transport equation is relevant
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for the formulation of well-known RANS models such as the k – ε or k – ω models. In the following, all transport terms are
calculated as indicated in Appendix A.5.

Figure 16a shows, for the turbulent channel flow at Reτ = 550, the ODT representation of the normalized transport terms,
or TKE budgets, for both T-ODT and S-ODT models. In general, there is a reasonable representation of the transport terms
in both T-ODT and S-ODT, when comparing with reference DNS data. The so-called advective transport contribution T +

A for
comparison with ODT is calculated as the sum of the DNS turbulent velocity related diffusion and pressure-related diffusion
TKE budgets. The peak of TKE production P̂+ is slightly overestimated in the S-ODT model in comparison to the T-ODT
model. However, the representation of the near-wall advective transport T +

A , and of the viscous transport of TKE, T +
V , is better in

S-ODT. Additionally, the near-wall TKE dissipation term ε+ is also better represented in S-ODT. This confirms the leverage of
the S-ODT formulation when evaluating near-wall gradients. Note that we also calculate the TKE dissipation by the balance of
the TKE transport equation, noted as εbal. For T-ODT and S-ODT channel flows, the dissipation resulting from the balance of
the TKE transport equation, ε+

bal, coincides approximately with the dissipation term calculated from the definition in Appendix
A.5, although the deviation is slightly larger in the (planar) S-ODT formulation. This proves that there is a negligible effect due
to numerical dissipation in T-ODT and S-ODT channel flows.

An important feature of S-ODT is that it allows the calculation of an equivalent pressure-diffusion transport term T +
Γ ,

comparable to the pressure-related transport in the DNS T +
p . This is not available in T-ODT. Said transport term in S-ODT results

from the implementation of the FCE step, see also Appendix A.5. The results in Figure 16a show that T +
Γ is almost negligible; it

is much smaller than the DNS reference data for T +
p . However, we recall that T +

p is in general negligible for low Mach number
constant property flows.

Figure 16b shows the same results as in Figure 16a, but now for turbulent pipe flow at the equivalent Reτ = 550. There is a
meaningful difference in the S-ODT pipe flow results between the dissipation term ε+ calculated by its definition in Appendix
A.5, and the dissipation term which results from the balance of the TKE transport equation ε+

bal. Said deviation is attributed to
the chosen values of Atf as discussed in Section 4.5, which results in non-negligible numerical diffusion due to mesh adaption.
The imbalance in TKE transport due to numerical diffusion is also responsible for significant (nonphysical) nonzero values of
T +

A away from the wall in the S-ODT cylindrical formulations. We did not find evidence of this issue in any other formulation,
neither the T-ODT planar or cylindrical formulation, nor the S-ODT planar formulation. This is remediated by choosing a
sufficiently large value of Atf, as previously discussed in Section 4.5. For comparison, we show in Figures 17a and 17b, the
equivalent results for the TKE budgets in S-ODT pipe flows using values Atf = 4 and Atf = 100. There are additional issues
related to numerical artifacts around the pole r̂ = 0 in the ODT cylindrical formulation. Appendices A.3 and A.5 discuss some of
these issues, which may affect the contributions to momentum and to the TKE. One issue of relevance relates to the appearance
of an artificial homogeneous Neumann boundary condition around the pole discussed when performing the deterministic ODT
advancement process, see Appendix A.3. Another issue is related to the calculation of the Reynolds stress u′v′

+
and of the

turbulent (advective) TKE flux when using the flux accounting method discussed in Appendix A.5.
Finally, we show in Figure 18 the behavior of the turbulence frequency ω+ = ε+/k+, utilizing the TKE dissipation ε calculated

as in Appendix A.5. This quantity is a measure of the turbulence time scale imposed by the flow, and it is relevant for some RANS
turbulence models, namely, the well-known k – ω model. Figure 18 shows that all ODT formulations are able to properly capture
an apparent viscous sublayer power law for ω. Additionally, all ODT formulations are also able to correctly predict the exponent
of a power law for ω in the logarithmic layer, evidenced by the apparent parallelism of the lines in the double logarithmic plot
for y+ > 30. Having said that, the prediction of the proportionality coefficient for said power law is incorrect, evidenced by the
offset of the parallel lines with respect to DNS in the logarithmic layer. Also, unlike DNS, all ODT model results exhibit a non-
monotonic behavior for ω+ in the buffer layer, i.e., a local minimum can be seen at y+ ≈ 8. The ODT results for the turbulence
frequency may signalize that, despite the fact that ODT is not able to properly represent contributions to the TKE (normal
Reynolds stress components), scalings for the ratio of TKE to dissipation, i.e., scalings for the turbulence time-scale, may be
reasonably reproduced in ODT. Thus, ODT could also supply valuable information for k –ω-like (or k –ε-like) turbulence models.

6 SUMMARY AND CONCLUSIONS

We have revisited the ODT formulation and its application for statistically steady, low Mach number turbulent channel and
pipe flows with constant fluid properties. For the T-ODT model formulation, we have performed an extensive study in order to
determine optimal model parameter values to use in a wide range of Reynolds numbers. To that extent, we found that the optimal
value of the Z model parameter, for small viscous suppression of eddies in T-ODT, is related to the position of the peak of TKE
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(a) (b)

F I G U R E 16 Contributions (Budget terms) to the TKE transport equation, in turbulent channel and pipe flows at Reτ = 550.
DNS turbulent channel flow data from [5], as well as DNS turbulent pipe flow data from [46], are shown for reference. (a)
Turbulent channel flow (Cases 550CT, 550CS). (b) Turbulent pipe flow (Cases 550PT, 550PS).

(a) (b)

F I G U R E 17 Contributions (Budget terms) to the TKE transport equation, in turbulent S-ODT pipe flows at Reτ = 550 using
different values of Atf. DNS turbulent pipe flow data from [46] is shown for reference. (a) Atf = 4 is used as in the (calibrated)
T-ODT formulation. (b) Atf = 100. Note that numerical imbalances lead to nonzero dissipation and advective transport around
the pole r̂ = 0, see text.

production, or alternatively, to the position of intersection of the viscous and turbulent stress. We deem Z to be a Reynolds
number independent parameter. Conversely, the optimal value of the C model parameter, related to the ODT eddy rate, can be
determined by calibration with respect to the bulk skin friction coefficient of the flow. C is a model constant at large Reτ .

We have discussed several issues related to T-ODT model results concerning first order and second-order flow statistics. In
general, we find a very reasonable representation of the mean flow and of the Reynolds shear stress profiles, as well as intrinsic
evidence related to the existence of a logarithmic layer in the ODT flow. The model is in general not well-suited to represent the
outer layer of the flow, although its performance improves at larger Reynolds numbers, e.g., in the prediction of the indicator
function or of the turbulent viscosity. Second-order flow statistics (TKE-related statistics) such as the RMS velocity profiles, are
not well represented in ODT. However, contributions to the TKE transport equation seem to be in reasonable agreement with
reference DNS data, as well as apparent scalings related to the turbulence time-scale or the turbulence frequency ω, at least in
the viscous sublayer and the logarithmic layer. Overall, we find very similar results when comparing the dynamics of turbulent
pipe and channel flows with ODT, as it is expected from boundary layer theory and from reference DNS data.
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F I G U R E 18 Turbulence frequency ω+ = ε+/k+ at different Reτ (Cases 550CT, 550CS, 550PT, 550PS, 2000CT, 2000PT,
10000CT, 10000PT). DNS turbulent channel flow data from [5], as well as DNS turbulent pipe flow data from [46] are shown for
reference. No DNS reference data for turbulent channel flow at Reτ = 10000 or for turbulent pipe flow at Reτ = 2000 or 10000
is presented.

In addition to the extensive evaluation performed with the T-ODT formulation, we have also introduced a novel modification
to the existing S-ODT formulation. The modification is aimed at addressing confined flows, i.e., the turbulent channel and pipe
flows, with a fully conservative FVM. The modified confined-flow treatment also led to the understanding of some effects related
to adaptive grid formulations, which are usually not discussed, i.e., the role of the grid adaption parameter Atf. This parameter
and the dynamic grid adaptivity may be responsible for numerical diffusion. The largest effect due to numerical diffusion by grid
adaption was evidenced in the context of the cylindrical formulation, most critically in the S-ODT cylindrical formulation.

S-ODT obeys a CFR-like forcing scheme of the flow, which contrasts with the FPG-like forcing used in constant properties
T-ODT flows. The latter is typically used for statistically steady and streamwise homogeneous DNS of turbulent pipe and
channel flows. In this context, the results obtained here for the statistically steady and streamwise-homogeneous S-ODT pipe
and channel flows are merely illustrative, and serve only as a demonstrative way to prove the consistency between T-ODT and
S-ODT. The numerical results showed that both model formulations were able to reasonably reproduce part of the reference
DNS data, such as the mean flow related statistics. When evaluating TKE-related statistics with comparison to DNS reference
data, the S-ODT formulation seems to deliver overall better results. Specifically, advective and viscous TKE transport budgets
near the wall are better represented in S-ODT, as well as the near-wall TKE dissipation rate, in comparison to T-ODT.

Although it was not the main motivation of this work to prove the computational efficiency of the ODT model, we comment
on some quantitative indicators. All of the ODT simulations carried out used, independently, one core of an AMD workstation
EPYC 7452 (with 32 available cores). These cores share a CPU frequency of 2.35 GHz. The total available working memory
in the workstation was 252 GB RAM. As an example for the sake of comparison, we note that an ODT pipe flow simulation
at Reτ = 1000 observes a dynamically adaptive grid with an initial number of 2000 cells. The nek5000 DNS pipe flow code
used by Khoury et al. [46] required 2.1842 × 109 grid points and employed an available infrastructure of 65536 cores for
simulations at Reτ = 1000. Having said that, it is important to stress that the computational cost of ODT is not fundamentally
related to the spatial discretization, since it is a 1-D model. Rather, it is more related to the number of ensemble members
required for the calculation of converged statistics. Larger Reynolds number flows require larger averaging times (more ensemble
members) for converged statistics. For the case 5200CT, T-ODT simulations required ≈ 900 CPU-h in order to achieve converged
statistics. This is significantly cheaper than the equivalent DNS study from [5], which required a total of 260 × 106 CPU-h in
a supercomputer cluster [53]. The computational cost may also be affected by the complexity of the implemented numerical
method. As a further cost example, the pipe flow case 550PT, a T-ODT simulation, required ≈ 175 CPU-h in order to achieve the
converged statistics reported in this work. This measure is representative of both the simulation time, and of the simultaneous or
concurrent online time-averaging required for statistical convergence. In S-ODT, due to the added complexity of the numerical
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method and the degree of detail required when gathering converged statistics, the equivalent S-ODT case 550PS (Reτ = 550)
necessitated ≈ 1225 CPU-h. S-ODT simulations are, therefore, unequivocally more expensive than their T-ODT counterparts.

Naturally, it is not ideal to carry out S-ODT simulations in cases where T-ODT model formulations suffice. T-ODT is a
robust model for statistically steady and streamwise homogeneous flows, but also for system dynamics; it can simulate unsteady,
wall-normal inhomogeneous flow as a response of sudden application of uniform pressure gradients. To that extent, control
of turbulent flow systems which can be idealized as streamwise homogeneous, as in very long fluid transport systems, or
homogeneous chemical reactors or heat exchangers, is a relevant application case for T-ODT. Other engineering flows of
relevance in which flow development is important, as in finite length annular pipe flows idealizing coaxial heat exchangers, are
more relevant application cases for the newly proposed confined flow S-ODT formulation. In the aforementioned flows, radial
mean flow asymmetry renders surrogate FPG-forcing models inconvenient. Further engineering cases of relevance could also be
envisioned for S-ODT, such as variable cross-sectional area flow devices like compressors or diffusers. For academic research
purposes, the novel confined flow S-ODT formulation presents new ways to potentially improve previous results, e.g., passive
scalar transport results from [26], or previous developing heated pipe flow results from [27]. In any case, the modified S-ODT
confined flow FVM formulation needs to be subject to more detailed studies in the future, with emphasis on the cylindrical
formulation. In general, S-ODT could prove to be a way to effectively approximate confined elliptic flows as parabolic flows. In
fact, the FCE step and related considerations presented in this work need not be particularly restricted to its application with
ODT. It could also be applied in the future to confined laminar flows exhibiting some degree of ellipticity, e.g., as in the case of
most slow moving flows in structured catalytic reactors.

Overall, turbulent spatially developing confined flows may exhibit challenging and technologically important multi-scale
or multi-physics flow phenomena. Some of these could now be addressed in the future with the novel S-ODT confined flow
framework.
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APPENDIX

A ODT FORMULATION

A.1 Triplet map formulation

We comment on the analytical form of the mapping f (ξ) (triplet map), which is used in ODT eddy events. First, for the sake
of completion, we detail the relevant form of the mapping rule applicable in planar Cartesian coordinates. This is taken from
[21, 32],

f (y) ≡



3y – 2y0 if y0 ≤ y ≤ y0 +
1
3

l

2l – 3y + 4y0 if y0 +
1
3

l ≤ y ≤ y0 +
2
3

l

3y – 2y0 – 2l if y0 +
2
3

l ≤ y ≤ y0 + l

y otherwise

(A1)

As specified in [32], this mapping rule is applicable for fluid at location f (y), which is moved to a location y as a consequence of
the transformation.

Next, we provide a novel analytical formula for the rule f (r) applicable for triplet maps in cylindrical coordinates. There may
be different types of mappings applicable in cylindrical coordinates. Lignell et al. [29] discuss some variants for the cylindrical
triplet maps, from which we focus in the so-called Triplet Map A (TMA) formulation. The TMA formulation is derived next
using an approach that is similar to the derivation of the spherical triplet map in [54]. First, assume positive r ≥ 0 coordinates.
We can denote the volume of an ODT eddy event per unit streamwise length, and unit angular displacement Ωl/(∆z∆θ), as

Ωl

∆z∆θ

∣∣∣∣∣
r≥0

=
∫ r0+l

r0

rdr =
1
2

∫ r0+l

r0

dr2 (A2)

The identity is obtained by differentiation properties. The above expression can then be rewritten as

Ωl

∆z∆θ

∣∣∣∣∣
r≥0

=
1
2

[∫ r0+l

0
dr2 –

∫ r0

0
dr2

]
(A3)

This second identity is obtained by splitting integrals around the pole r = 0. Equation (A3) can be generalized for the coordinate
r̂ using the signum operator sgn as

Ωl

∆z∆θ
=

1
2

sgn(r̂0)

[
sgn(r̂0 + l)sgn(r̂0)

∫ |̂r0+l|

0
dr̂2 –

∫ |̂r0|

0
dr̂2

]
(A4)

We now use the identities outlined before to define the cylindrical triplet map. As in [54], we first find the internal boundaries
r̂b for b ∈ {0, 1, 2, 3}, which limit the three segments of the triplet map. Note that for b = 0 we have the left edge of the eddy r̂0,
while for b = 3 we have the right edge r̂3 = r̂0 + l. The boundaries r̂b are obtained following the consideration that the volume of
each segment of the triplet map (TMA), is equivalent to one third of the overall eddy volume. To that extent, as an example,
consider the boundary r̂1, which can be calculated by

1
2

∫ |̂r1|

0
dr̂2 = sgn

(
1
2

∫ |̂r0|

0
dr̂2 + sgn(r̂0)

1
3

Ωl

∆z∆θ

)[
1
2

∫ |̂r0|

0
dr̂2 + sgn(r̂0)

1
3

Ωl

∆z∆θ

]
(A5)

Substituting Ωl/(∆z∆θ) from Eq. (A4), and solving for r̂2
1, we obtain,

r̂2
1 = sgn

(
1
3

sgn(r̂0 + l)sgn(r̂0) (r̂0 + l)2 +
2
3

r̂2
0

)[
1
3

sgn(r̂0 + l)sgn(r̂0) (r̂0 + l)2 +
2
3

r̂2
0

]
(A6)
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The boundary r̂2, or rather, r̂2
2, can be obtained in a very similar way,

1
2

∫ |̂r2|

0
dr̂2 = sgn

(
1
2

∫ |̂r1|

0
dr̂2 + sgn(r̂1)

1
3

Ωl

∆z∆θ

)[
1
2

∫ |̂r1|

0
dr̂2 + sgn(r̂1)

1
3

Ωl

∆z∆θ

]
(A7)

such that
r̂2

2 =sgn
(

r̂2
1 +

1
3

sgn(r̂1)sgn(r̂0 + l) (r̂0 + l)2 –
1
3

sgn(r̂1)sgn(r̂0)r̂2
0

)
[

r̂2
1 +

1
3

sgn(r̂1)sgn(r̂0 + l) (r̂0 + l)2 –
1
3

sgn(r̂1)sgn(r̂0)r̂2
0

] (A8)

The formula for all r̂b for b ∈ {0, 1, 2, 3} can then be written in a generalized form as

r̂2
b =sgn

(
r̂2

b–1 +
1
3

sgn(r̂b–1)sgn(r̂0 + l) (r̂0 + l)2 –
1
3

sgn(r̂b–1)sgn(r̂0)r̂2
0

)
[

r̂2
b–1 +

1
3

sgn(r̂b–1)sgn(r̂0 + l) (r̂0 + l)2 –
1
3

sgn(r̂b–1)sgn(r̂0)r̂2
0

] (A9)

Note that the actual positions r̂b with their corresponding sign can be found by taking the square root of r̂2
b, and then multiplying

the preceding RHS signum operator expression in Eq. (A9) by the sign of the boundary r̂b–1. Next, we find the mapping rule in
the first segment of the triplet map (TMA). In said segment, the scalar profile from the range [r̂0, r̂0 + l] is compressed to fit the
range [r̂0, r̂0 + l/3]. The equivalence between the fluid at location f (r̂) and the mapped location r̂ is given by a volumetric relation,
which considers that the volume resulting from the fluid at location f (r̂) and the left edge of the eddy r̂0, is three times the volume
of the corresponding mapped location r̂ in the first segment of the map. Therefore, similar to the procedure to find r̂b, we get

1
2

∫ |f (̂r)|

0
dr̂2 =sgn

(
1
2

∫ |̂r0|

0
dr̂2 + 3sgn(r̂0)

[
1
2

sgn(r̂)
∫ |̂r|

0
dr̂2 –

1
2

sgn(r̂0)
∫ |̂r0|

0
dr̂2

])
{

1
2

∫ |̂r0|

0
dr̂2 + 3sgn(r̂0)

[
1
2

sgn(r̂)
∫ |̂r|

0
dr̂2 –

1
2

sgn(r̂0)
∫ |̂r0|

0
dr̂2

]} (A10)

After some rearrangement and solving for f 2(r̂), we find

f 2(r̂)

∣∣∣∣∣
1st segment

= sgn
(
3sgn(r̂0)sgn(r̂)r̂2 – 2r̂2

0

) [
3sgn(r̂0)sgn(r̂)r̂2 – 2r̂2

0

]
(A11)

In the second segment of the triplet map, the scalar profile from the range [r̂0, r̂0 + l] is compressed to fit the range
[r̂0 + l/3, r̂0 + 2l/3], and is subsequently reversed (inverted slope). In order to invert the profile, we state a volumetric relation
between f (r̂) and the right edge of the eddy at r̂0 + l. The corresponding relation is

1
2

∫ |f (̂r)|

0
dr̂2 =sgn

(
1
2

∫ |̂r0+l|

0
dr̂2 – 3sgn(r̂0 + l)

[
1
2

sgn(r̂)
∫ |̂r|

0
dr̂2 –

1
2

sgn(r̂1)
∫ |̂r1|

0
dr̂2

])
{

1
2

∫ |̂r0+l|

0
dr̂2 – 3sgn(r̂0 + l)

[
1
2

sgn(r̂)
∫ |̂r|

0
dr̂2 –

1
2

sgn(r̂1)
∫ |̂r1|

0
dr̂2

]} (A12)

From which, solving for f 2(r̂), we find

f 2(r̂)

∣∣∣∣∣
2nd segment

=sgn
(

(r̂0 + l)2 – 3sgn(r̂0 + l)sgn(r̂)r̂2 + 3sgn(r̂0 + l)sgn(r̂1)r̂2
1

)
[
(r̂0 + l)2 – 3sgn(r̂0 + l)sgn(r̂)r̂2 + 3sgn(r̂0 + l)sgn(r̂1)r̂2

1

] (A13)
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(a) (b)

F I G U R E A1 Effect of planar and cylindrical triplet maps on a scalar velocity profile. The dashed vertical lines indicate the
internal boundaries of the map (first, second and third segments). (a) Near-wall triplet map applied on a linear velocity profile
using δ = 1, ξ0 = –0.8 and l = 0.4. (b) Centerline-asymmetric triplet map applied on a parabolic velocity profile using δ = 1,
ξ0 = –0.2 and l = 0.6.

The third segment in the map is entirely similar to the first one. Similar reasoning leads then to

f 2(r̂)

∣∣∣∣∣
3rd segment

= sgn
(
r̂2

0 + 3sgn(r̂0)sgn(r̂)r̂2 – 3sgn(r̂0)sgn(r̂2)r̂2
2

) [
r̂2

0 + 3sgn(r̂0)sgn(r̂)r̂2 – 3sgn(r̂0)sgn(r̂2)r̂2
2

]
(A14)

Similar to the determination of the positions r̂b, we can find the actual positions f (r̂) by taking the square root of f 2(r̂) and then
multiplying the preceding signum operator expressions on the RHS of Eq. (A11), (A13) and (A14) by the sign of r̂0, r̂0 + l and
r̂0, in the first, second and third segments, respectively. To summarize, the generalized mapping rule in cylindrical coordinates,
for a fluid at location f (r̂) and mapped location r̂, takes the form

f (r̂) ≡


sgn(F1)sgn(r̂0)

√
sgn(F1)F1, F1 = 3sgn(r̂0)sgn(r̂)r̂2 – 2r̂2

0 if r̂0 ≤ r̂ ≤ r̂1

sgn(F2)sgn(r̂0 + l)
√

sgn(F2)F2, F2 = (r̂0 + l)2 – 3sgn(r̂0 + l)sgn(r̂)r̂2 + 3sgn (r̂0 + l) sgn(r̂1)r̂2
1 if r̂1 ≤ r̂ ≤ r̂2

sgn(F3)sgn(r̂0)
√

sgn(F3)F3, F3 = r̂2
0 + 3sgn(r̂0)sgn(r̂)r̂2 – 3sgn(r̂0)sgn(r̂2)r̂2

2 if r̂2 ≤ r̂ ≤ r̂0 + l

r̂ otherwise
(A15)

Figure A1a shows the effect of a planar and a cylindrical triplet map on a linear velocity profile, e.g., near the wall in a
turbulent pipe or channel flow. For comparison, we also show in Figure A1b the effect of slightly asymmetric maps (asymmetric
with respect to the centerline) on a parabolic velocity profile.

A.2 Kernel coefficients

Next, we explain the calculation of the kernel coefficients c = [cw, cv, cu]T and b = [bw, bv, bu]T in Equations (2) and (10).
These coefficients modify the corresponding velocity components during eddy events, and are associated to the kinetic energy
redistribution procedure detailed in Sections 2.1.1 and 2.2.1.

A.2.1 T-ODT kernel coefficients

The procedure for calculation of the T-ODT kernel coefficients is explained in [22] and [29]. Here, we only summarize the most
important issues. It is necessary to conserve momentum upon application of any triplet map and kernel procedure during eddy
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events. As per Eq. (2), observing constant density, this implies∫ ξ0+l

ξ0

u(ξ, te)ξmdξ =
∫ ξ0+l

ξ0

[
u(f (ξ), te) + cK(ξ)

]
ξmdξ (A16)

For subsequent ease of notation and clarity, we note that it is possible to replace integrals of the form
∫

un(ξ)ξmdξ by∫
un(f (ξ))ξmdξ due to the measure preserving properties of the triplet map. To that extent, momentum conservation can be

rewritten as ∫ ξ0+l

ξ0

u(f (ξ), te)ξmdξ =
∫ ξ0+l

ξ0

[
u(f (ξ), te) + cK(ξ)

]
ξmdξ (A17)

Since c is uniform, and by definition
∫ ξ0+l
ξ0

K(ξ)ξmdξ = 0, Eq. (A17) is trivially satisfied. For low Mach number isothermal
constant density flows, the total energy may be evaluated by the kinetic energy of the flow. An eddy event causes the kinetic
energy of all velocity components to change by a certain amount. Omitting functional dependencies other than those needed
to indicate mapped quantities, said change ∆E per velocity component, which has units of energy per unit area in a planar
formulation, and of energy per unit length and unit angular displacement in a cylindrical formulation, is given by

∆E =
1
2
ρ

∫ ξ0+l

ξ0

[
u(f (ξ)) ∗ u(f (ξ)) + 2u(f (ξ)) ∗ cK + K2c ∗ c

]
ξmdξ –

1
2
ρ

∫ ξ0+l

ξ0

u(f (ξ)) ∗ u(f (ξ))ξmdξ (A18)

We have defined the operator ∗ in Eq. (A18) as an element-wise product operator, such that Eq. (A18) remains a vector equation.
The sum of the changes in kinetic energy ∆E among all velocity components results in the conservation of total kinetic energy
during eddy events, i.e.,

∆E · 1 = 0 (A19)

We have used 1 = [1, 1, 1]T . For the sake of a simplified notation, we introduce the following variable substitution,

uK ≡
∫ ξ0+l

ξ0

u(f (ξ))Kξmdξ (A20)

In order to determine c, we resort to Eq. (A18), which can then be rewritten using Eq. (A20) as(
1
2

∫ ξ0+l

ξ0

K2ξmdξ

)
c ∗ c + uK ∗ c –

∆E
ρ

= 0 (A21)

The quadratic solution for c is, following [22] and [29],

c =
–uK + sgn

(
uK
)√

uK ∗ uK + 2
(∫ ξ0+l

ξ0
K2ξmdξ

)
∆E
ρ(∫ ξ0+l

ξ0
K2ξmdξ

) (A22)

The signum operator term sgn(uK) has been used to resolve the ambiguity of the sign of the corresponding root. Note that we
can also find a global minimum for ∆E by differentiating Eq. (A21) with respect to c, and setting the result equal to zero. Said
procedure results in the value ccrit yielding ∆Emin,

ccrit = –
uK∫ ξ0+l

ξ0
K2ξmdξ

(A23)

The minimum kinetic energy change ∆Emin is then, upon substitution of ccrit,

∆Emin = –ρ
uK ∗ uK

2
∫ ξ0+l
ξ0

K2ξmdξ
(A24)

This leads to the definition of the available or extractable kinetic energy per velocity component Q,

Q ≡ –∆Emin = ρ
uK ∗ uK

2
∫ ξ0+l
ξ0

K2ξmdξ
(A25)
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Due to total energy conservation, Eq. (A19), the kinetic energy change per velocity component ∆E is related to the available
kinetic energy Q in a phenomenological way. This introduces the ODT model parameter α as a way to control the redistribution
of kinetic energy among velocity components, see [32],

∆E = αT Q (A26)

The transfer matrix T in Eq. (A26) is defined as in [32],

T =
1
2

–2 1 1
1 –2 1
1 1 –2

 (A27)

Upon substitution of Eq. (A26) and (A25) in Eq. (A22), we find the formula for calculation of the kernel coefficient vector c,

c =
–uK + sgn

(
uK
)√

uK ∗ uK + αT uK ∗ uK(∫ ξ0+l
ξ0

K2ξmdξ
) (A28)

Note that use of α = 0 in Eq. (A28) leads to c = 0, a vector with components equal to zero. This is the case of the cylindrical
formulation used in this work.

A.2.2 S-ODT kernel coefficients

The procedure for calculation of the S-ODT kernel coefficients is, mostly, similar to that in T-ODT. We summarize here again
only the most important issues from the discussion in [22] and [29]. Notably, instead of conservation laws for (specific) scalars,
S-ODT eddy events observe balances of flux-related (specific) quantities due to streamwise velocity advection. We refer first to
the balance of momentum flux (due to streamwise advection) upon application of a triplet map and ODT kernel functions as per
Eq. (10), considering constant density,∫ ξ0+l

ξ0

u(f (ξ))u(f (ξ))ξmdξ =
∫ ξ0+l

ξ0

u(f (ξ))
[
u(f (ξ)) + cK(ξ) + bJ(ξ)

]
ξmdξ (A29)

Note the subtle notation difference between the vector u = [v, w, u]T and the streamwise velocity component u. The balance of
kinetic energy flux per velocity component due to streamwise velocity advection is

∆Eu =
1
2
ρ

∫ ξ0+l

ξ0

u(f (ξ))
[
u(f (ξ)) ∗ u(f (ξ)) + 2u(f (ξ)) ∗ (cK + bJ) + K2c ∗ c + 2KJc ∗ b + J2b ∗ b

]
ξmdξ

–
1
2
ρ

∫ ξ0+l

ξ0

u(f (ξ))
[
u(f (ξ)) ∗ u(f (ξ))

]
ξmdξ

(A30)

Eq. (A29) and (A30) resemble the equations for steady state streamwise momentum and energy flux balances, respectively,
upon application of the K and J kernels to the velocity profiles, and under assumption of mass conservation and uniform
thermodynamic pressure. The only inconsistency is that the streamwise advecting velocity u on the post-mapped momentum and
energy fluxes, see RHS of Eqs. (A29) and (A30), is modified by the triplet map, but not by the subsequent kernel application.
This has been discussed in Section 2.2.2. It is not possible to simultaneously enforce constraints on the mass, momentum and
energy in S-ODT, since doing so would require elliptic considerations on the pressure. This is the reason why the local constancy
of the streamwise mass flux is enforced in a subsequent correction step, modifying the cross-section of the (semi-)Lagrangian
S-ODT volume. Furthermore, the presence of walls requires the implementation of the additional FCE step in an entirely similar
way to that discussed in Section 2.2.2 and 2.2.3. In addition to Eq. (A29) and (A30), an additional constraint related to the total
streamwise kinetic energy flux is observed, similar to T-ODT,

∆Eu · 1 = 0 (A31)
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We now introduce the following substitution of variables,

uJu ≡
∫ ξ0+l

ξ0

u(f (ξ))Jξmdξ

uKu ≡
∫ ξ0+l

ξ0

u(f (ξ))Kξmdξ

uKKu ≡
∫ ξ0+l

ξ0

u(f (ξ))K2ξmdξ

uJJu ≡
∫ ξ0+l

ξ0

u(f (ξ))J2ξmdξ = uKKu, since J2 =
∣∣K∣∣2 = K2

uKJu ≡
∫ ξ0+l

ξ0

u(f (ξ))KJξmdξ

uJuu ≡
∫ ξ0+l

ξ0

u(f (ξ))u(f (ξ))Jξmdξ

uKuu ≡
∫ ξ0+l

ξ0

u(f (ξ))u(f (ξ))Kξmdξ

(A32)

Using Eq. (A32), Eq. (A29) is rewritten as
buJu = –cuKu (A33)

For further ease of notation, we also define

Hu ≡uKu

uJu

Pu ≡uKuu – HuJuu

Su ≡1
2
(
H2

u + 1
)

uKKu – HuuKJu

(A34)

In order to determine c, we resort to Eq. (A30), which can then be rewritten using Eq. (A32) and (A34) as

Suc ∗ c + Pu ∗ c –
∆Eu

ρ
= 0 (A35)

The solution for c is then, following [22] and [29],

c =
–Pu + sgn

(
Pu
)√

Pu ∗ Pu + 4Su
∆Eu

ρ

2Su
(A36)

As in T-ODT, there is a critical coefficient ccrit which yields a minimum kinetic energy flux change per velocity component,

ccrit = –
Pu

2Su
(A37)

The minimum kinetic energy flux change defines then the available or extractable kinetic energy flux Qu,

Qu ≡ –∆Eumin = ρ
Pu ∗ Pu

4Su
(A38)

As in T-ODT, due to the constraint given by Eq. (A31), ∆Eu is related to Qu by the ODT model parameter α and the same
transfer matrix T from Eq. (A27),

∆Eu = αT Qu (A39)

Upon substitution of Eq. (A39) and (A38) in Eq. (A36), we find the formula for calculation of the kernel coefficient vector c in
the S-ODT formulation,

c =
–Pu + sgn

(
Pu
)√

Pu ∗ Pu + αT Pu ∗ Pu

2Su
(A40)
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By substitution of Eq. (A40) in Eq. (A33), we find the value of the coefficient vector b in S-ODT,

b = –Hu

[
–Pu + sgn

(
Pu
)√

Pu ∗ Pu + αT Pu ∗ Pu

2Su

]
(A41)

As in T-ODT, use of α = 0 in Eq. (A40) and (A41) leads to c = b = 0. Note also that for S-ODT channel flows, with α ̸= 0,
some eddy events may occasionally cause negative values u < 0 upon implementation of the kernel procedure. Said negative
values violate parabolic flow assumptions in S-ODT, and as such, these candidate eddy events are discarded and not implemented
(even if they succeed the acceptance probability test as explained in Section 2.2.1).

A.3 Numerical methods and discretization issues

The discretization and numerical advancement of the ODT governing equations for use in the deterministic advancement process
is discussed next. We specialize the discussion and notation to the T-ODT and S-ODT cylindrical formulations.

A.3.1 T-ODT cylindrical formulation

The FVM for the integral T-ODT momentum pipe flow equation, Eq. (9), is obtained by discretization of the r̂ coordinate in a
numerical domain [–δ, δ], considering grid cells with midpoint-located cell centers identified with subindex i, and corresponding
cell interfaces identified with subindices i + 1/2 and i – 1/2. The numerical grid is irregular, since an adaptive mesh is used, see
[22]. Constant properties are assumed within cells and the density is constant. This results in the trivial enforcement of mass
conservation, Eq. (8), which implies that there are no changes in the cell interfaces or cell sizes during numerical time integration.
The T-ODT momentum pipe flow equation, Eq. (9), is then the only equation required for numerical advancement. Said equation
is integrated numerically in time using an explicit Euler time-advancement scheme. The resulting numerical discretization is(ui,n+1 – ui,n

∆t

) (∆r̂2
i

)
2

= –
1
ρ

dp
dz

ez

(
∆r̂2

i

)
2

+ η
[(

r̂i+1/2
ui+1,n – ui,n

r̂i+1 – r̂i

)
–
(

r̂i–1/2
ui,n – ui–1,n

r̂i – r̂i–1

)]
(A42)

Note that ∆r̂2
i = r̂2

i+1/2 – r̂2
i–1/2 is a measure for the cell volume (per unit streamwise length, and unit angular displacement),

applicable for cells which do not include the pole r̂ = 0. For the cell including the pole, ∆r̂2
i = r̂2

i+1/2 + r̂2
i–1/2, following [29]. This

notation is different from the square of the cell length (for any cell) ∆r̂2
i ̸= (∆r̂i)2 = (r̂i+1/2 – r̂i–1/2)2. In addition to the spatial

discretization subindex i, we have also used the subindex n for temporal discretization. To that extent, Eq. (A42) is solved for the
new velocity at cell i and discrete time n + 1, i.e., ui,n+1. The time-step for advancement is ∆t = tn+1 – tn.

Since we are using an explicit Euler time-advancement scheme, ∆t needs to obey the CFL diffusion criterion for numerical
stability. However, to the best of our knowledge, there is no clear basis for the calculation of such CFL criterion in the specific
problem at discussion, i.e., a pseudo-polar coordinate r̂ grid, which is also irregular. On the basis of a rewriting of the second
radial derivative associated with the diffusion term (η/̂r)d/dr̂(r̂du/dr̂), as (η/̂r)du/dr̂ + ηd2u/dr̂2, we suggest a CFL criterion which
results from the most restrictive condition associated to both terms contributing to the cylindrical diffusion term. That is,

∆t = min

(
CCFL

(∆r̂i)2

η
, CCFL

∆r̂2
i

2η

)
among all i (A43)

Here, we consider the dimensionless safety factor CCFL ≤ 0.25. Note that CCFL = 0.5 is the theoretical CFL condition limit
for diffusion in a 1-D equidistant grid. Our stability limit is taken conservatively as half of the equidistant grid limit. The first
candidate for evaluation of ∆t in Eq. (A43) is then the usual CFL diffusion criterion in Cartesian coordinates, which would
correspond to the planar contribution to diffusion, i.e., the term ηd2u/dr̂2. Conversely, the second candidate for evaluation of ∆t
in Eq. (A43) is a normal deceleration term due to viscous friction, i.e., that linked to the contribution (η/̂r)du/dr̂, noting that
r̂dr̂ = (1/2)dr̂2. This term only appears in cylindrical coordinates.

In the cylindrical 1-D grid, there is an additional issue which requires further consideration. Despite the fact that ∆r̂2
i ̸= 0

and (∆r̂i)2 ̸= 0 for all i, it is possible that a given cell observes an interface r̂i+1/2 → 0 or r̂i–1/2 → 0. In such cases, the explicit
advancement of Eq. (A42) may effectively introduce an artificial boundary condition at said cell interface near the pole. Indeed,
this would be an artificial homogeneous Neumann boundary condition, which would result in an apparent decoupling of the
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F I G U R E A2 Developing flow velocity profile showing an apparent discontinuity around the pole when using the cylindrical ODT formulation.

semi-positive and semi-negative radial domains, r̂ > 0 and r̂ < 0, respectively. This is another issue which is only relevant for the
ODT formulation at discussion. In 3-D DNS, both cylindrical domains, r̂ > 0 and r̂ < 0, would be coupled by the complementary
azimuthal discretization of flow variables. Alternatively, in the case of the numerical solution of regular 1-D radial diffusion
equations, e.g., for a laminar pipe flow, the symmetry of the solution prevents any related issue. However, in the ODT cylindrical
formulation, asymmetries around the pole may arise due to the implementation of triplet maps crossing r̂ = 0. In this context, it
is possible that the numerical solution found at any given discrete time after the deterministic advancement process exhibits an
apparent discontinuity, or rather, numerical stiffness around the pole. This is shown in Figure A2.

We note that the presence of the apparent discontinuity or numerical stiffness around the pole in any given flow snapshot in
the T-ODT cylindrical formulation does not necessarily lead to significant effects in the resulting flow statistics. Figures A3a
and A3b show the mean and RMS streamwise velocity profiles across the entire radial grid for case 2000PT and 10000PT. The
apparent formulation artifact at the pole does not seem to affect the mean velocity profiles in a significant way. There is no
apparent dependency or effect due to lower or larger Reynolds numbers on the mean velocity profile either. The RMS velocity
profile for case 2000PT exhibits a mild decrease very close to (or precisely at) r̂ = 0, as well as a moderate increase in the
outer-layer region around r̂ = 0. This artifact is also affected by the simulated flow Reynolds number, since case 10000PT does
not show the decrease in the RMS velocity at r̂ = 0. The affected domain range remains, in all cases, limited to a region of extent
≤ 0.2δ centered around r̂ = 0, i.e., a region of 0.1δ in both the semi-negative and semi-positive radial domains. During the time
it took to finish this manuscript, several strategies were tested as a way to remediate the numerical ODT cylindrical artifact
around the pole. One strategy was a method for artificial diffusion flux suppression close to r̂ = 0, which was similar to the one
used by [41]. Said flux suppression method required specification of a suppression range in the numerical grid (additional model
parameter), and it worsened the behavior of the artificial Neumann boundary condition. Thus, it performed in an undesirable
way. Another tested strategy relied on the use of a symmetric cell around the pole, i.e., a cell with cell center at r̂i=center = 0, and
faces at r̂i=center–1/2 = –∆ri=center/2 and r̂i=center+1/2 = ∆ri=center/2. This strategy required the specification of the center cell size
∆ri=center. Said center cell necessitated a size significantly larger than δη . In this way, the mitigation strategy increased numerical
diffusion around the pole, effectively coupling both half-domains r̂ < 0 and r̂ > 0. Although the latter strategy was effective,
it was numerically undesirable since it introduced additional numerical diffusion in order to enforce the size of the centered
cell at the pole. It also introduced another model parameter to the formulation, namely ∆ri=center, which was also sensitive to
the simulated flow Reynolds number. Yet another tested strategy was the use of an implicit Euler time integration scheme for
the advancement of Eq. (A42). The motivation for this strategy was the uncertainty associated to the appropriate CFL stability
criterion for explicit Euler advancement in the 1-D cylindrical grid. Since the artificial Neumann boundary condition results in
numerical stiffness, it was believed that the use of an implicit time integration method could remediate these issues. However,
the use of an implicit Euler scheme still yielded instantaneous profiles such as those shown in Figure A2.

In an effort to clarify the effects which may arise from the numerical artifact at the pole, consider the following situations. First,
consider a plain 1-D laminar pipe-flow simulation with an irregular, yet fixed (static, not dynamic) grid, with a central element
having a cell face position at r̂ = 0, in which an initial profile, asymmetric with respect to r = 0, diffuses over some time. Before
reaching the steady state solution, we will always have 2 independent profiles for the semi-positive and semi-negative domain
sides. Now consider the effect of eddy events in this simulation. In general, large velocity gradients favor the implementation of



38 MEDINA MÉNDEZ ET AL.

(a) (b)

F I G U R E A3 (a) Mean streamwise velocity pipe flow profile throughout the entire 1-D radial grid for cases 2000PT
(Reτ = 2000) and 10000PT (Reτ = 10000). (b) RMS streamwise velocity pipe flow profile throughout the entire 1-D radial grid
for cases 2000PT (Reτ = 2000) and 10000PT (Reτ = 10000).

eddy events. For infrequent turbulent transport, the centerline region of the numerical pipe is mostly unaffected by mappings,
and the induced zero gradient due to diffusion next to r = 0 results in a feedback mechanism forbidding implementation of
eddies around the centerline. This is a region of low mixing or laminarization centered around r̂ = 0, which is responsible for a
sudden drop in the streamwise RMS velocity profile exactly at r̂ = 0. This is the situation seen in Figure A3b for case 2000PT.
The local laminarization also implies that only larger (and infrequent) eddies are responsible for mixing around the centerline.
The larger eddies, conversely, yield an additional artificial increase in the turbulence intensity close yet away from r̂ = 0. Since
the frequency of implementation of eddy events increases with the Reynolds number, we expect that the numerical artifact
around the pole is mitigated at larger Reynolds numbers. We partially see this in Figure A3b for case 10000PT, since the sudden
drop due to laminarization in the streamwise RMS velocity profile exactly at r̂ = 0 is attenuated in comparison to case 2000PT.
More importantly, this also implies that ODT eddy events are the mechanism responsible for preserving the dynamical coupling
between both the semi-negative and semi-positive radial domains in an otherwise laminar developing flow solution.

Based on our results, shortcomings, and discussion, we deliberately omitted the use of any remediating strategy for the
numerical artifact at the pole in the final version of the results of this manuscript. Our goal and deliberate decision in this work
was to maintain the simplicity of the formulation, while commenting on these issues. The pole artifact, despite not invalidating
the obtained results, specially not those of the mean flow which is unaffected by them, must be carefully observed and considered
when discussing the cylindrical ODT formulation. As commented in Section 4.5, the dynamic grid adaption strategy also
introduces numerical diffusion. Future work should evaluate a cylindrical ODT formulation with a fixed (non-dynamic) grid, in
which the cells are located in a way such that no face coincides with r̂ = 0. The best numerical accuracy would be obtained for
an equidistant grid. Furthermore, a theoretically second-order accuracy for the spatial discretization could be obtained if the
center of the cells in the 1-D domain corresponds to the centroid of the cylindrical volume, instead of the midpoint choice used
here, see [55].

A.3.2 S-ODT formulation

We begin the discussion of the numerical discretization applicable in S-ODT (specializing to the cylindrical formulation) with
the corresponding momentum equation, Eq. (16),

ui,n+1ui,n+1

(
∆r̂2

i,n+1

)
2

– ui,nui,n

(
∆r̂2

i,n

)
2

= η
∫
∆z

[(
r̂i+1/2

ui+1 – ui

r̂i+1 – r̂i

)
–
(

r̂i–1/2
ui – ui–1

r̂i – r̂i–1

)]
dz (A44)

We have deliberately omitted the subindex n for all variables in the integral of the RHS. The reason for this will be explained
next. Note that, in comparison with the T-ODT formulation, the grid cell positions and sizes now observe a subindex n to indicate
the dynamic change in the grid cell interfaces due to the mass conservation enforcement as discussed in Section 2.2.3. As per the
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logic of the FCE step, and also due to Eq. (15), the local cell-wise streamwise mass flux must remain constant. Furthermore, grid
cell volume changes should occur during the FCE step, and not during the integration of the momentum equation. This suggests
that Eq. (A44) may be rewritten as

ui,n+1 – ui,n =
η

ui,n
(∆r̂2

i,n)
2

∫
∆z

[(
r̂i+1/2,n

ui+1 – ui

r̂i+1,n – r̂i,n

)
–
(

r̂i–1/2,n
ui – ui–1

r̂i,n – r̂i–1,n

)]
dz (A45)

Upon consideration of Eq. (A45), there is the question of how to numerically evaluate the integral on the RHS. The easiest
choice is an explicit Euler method for ui. In this context, previous S-ODT investigations have only used traditional forms of
the CFL condition as Eq. (A43), in order to determine the size of the explicit advancement step ∆z. However, the numerical
stability discussion for cylindrical coordinates initiated for the T-ODT formulation gains now additional relevance in the S-
ODT formulation. If the nature of the CFL condition in cylindrical coordinates was already opaque for time-dependent 1-D
diffusion equations, it becomes entirely unclear when discussing Eq. (A45). Intuitively, or empirically, a locally u dependent
CFL condition should be used in S-ODT in order to solve the momentum equation with an explicit integration method. This is
due to the preceding (inverse) u term on the RHS of Eq. (A45). Concerning the magnitude of the advancement step, we could
propose a modification on condition (A43) for the required streamwise advancement step ∆z in S-ODT as

∆z = min

(
CCFLui,n

(
∆r̂i,n

)2

η
, CCFLui,n

∆r̂2
i,n

2η

)
among all i (A46)

Unfortunately, in the case of the the turbulent pipe and channel flows evaluated in this work, the use of the condition (A46) for
the estimation of ∆z, and subsequent use of an explicit Euler advancement scheme for Eq. (A45) resulted, in almost all cases, in
unstable S-ODT simulations. It is noted that any appearance of velocity values u < 0 in S-ODT immediately forbids simulation
progress. This is because negative streamwise velocities indicate recirculation, and therefore, a violation of the parabolic flow
assumptions required for streamwise marching schemes. Appearance of negative velocity values using condition (A46), usually
occurred near the walls. In the specific case of the cylindrical formulation, since we were using the model parameter α = 0 as
well as equal (uniform zero) initial conditions for azimuthal and radial velocity components w and v, respectively, the appearance
of values u < 0 could only be attributed to numerical instabilities. However, we note that instabilities of the same type also
occurred for S-ODT channel flows. Recall also that, for both planar and cylindrical formulations, the FCE step cannot yield
negative velocities if the input velocity field is entirely positive. This is because the FCE step is merely a multiplicative correction
step. Based on condition (A46), it is clear that the most critical condition for determination of ∆z is located near the walls, where
ui values are smaller, the velocity gradient is steepest, and consequently, ∆r̂i (or ∆yi in the planar formulation) is also smaller
due to the dynamically adaptive grid.

In order to overcome stability issues, we have found a compromise for the S-ODT numerical advancement of Eq. (A45), and
that is to use an implicit scheme for the evaluation of the RHS integral. In practice, we use a Crank-Nicolson time-integration
method of the following form

(
u∗i,n+1 – ui,n

)
=

∆z
ui,n
(
∆r̂2

i,n

){η [(r̂i+1/2,n
u∗i+1,n+1 – u∗i,n+1

r̂i+1,n – r̂i,n

)
–
(

r̂i–1/2,n
u∗

i,n+1 – u∗i–1,n+1

r̂i,n – r̂i–1,n

)]
+ η
[(

r̂i+1/2,n
ui+1,n – ui,n

r̂i+1,n – r̂i,n

)
–
(

r̂i–1/2,n
ui,n – ui–1,n

r̂i,n – r̂i–1,n

)]} (A47)

A similar numerical method is used for the planar formulation. As in Section 2.2.3, we have used u∗ to indicate the predictor
value of the velocity field at coordinate zn+1 resulting from the advancement of Eq. (16). Said predictor value is corrected next in
the FCE step, see Section 2.2.3.

The FVM discretization of Eq. (15), which is required in order to calculate the new Lagrangian radial cell sizes as demanded
by Eq. (17), is

u∗i,n+1
∆r̂2∗

i,n+1

2
= ui,n

∆r̂2
i,n

2
(A48)

Here, the updated values of u∗i,n+1 from the momentum PDE advancement, Eq. (A47), are used in order to calculate the new cell
sizes ∆r̂2∗

i,n+1. This is the Lagrangian volume deformation step from previous unconfined S-ODT formulations, see [22, 29, 34].
In unconfined flow formulations, the newly calculated 1-D cells are arranged starting with one of the two fixed wall positions. In
the novel confined flow S-ODT formulation, the latter cell rearrangement step is omitted. The Lagrangian volume deformation
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step is followed directly by the FCE corrector step, involving a new adjustment of the cell sizes in order to comply with the
confinement due to the walls. To that extent, the correction factor Γ is calculated as per Eq. (18). In discrete cylindrical grid
notation, Γ takes the form

Γ =
∑

i ∆r̂2
i∑

i ∆r̂2∗
i,n+1

(A49)

Said factor Γ is then used to correct ∆r̂2∗
i,n+1, as well as the predicted velocity values u∗

i,n+1 such that

∆r̂2
i,n+1 = Γ∆r̂2∗

i,n+1, u†
i,n+1 =

u∗i,n+1

Γ
(A50)

The corrected cells are now rearranged starting with one of the two fixed wall positions. The FCE corrector step allows the last
cell edge to coincide with the position of the other wall. We note that cell interface rearrangement in the S-ODT cylindrical
formulation is based on the readjustment of cell volumes ∆r̂2 in a way in which these are forced to obey the confinement
constraint due to the pipe walls. In the planar formulation, cell interface rearrangement follows regular enforcement of cell sizes
∆y instead (here omitting cell indices i for generality). It may be relevant to stress that advective transport due to the shifting of
cell interfaces, or more specifically, the Lagrangian cell interface velocity, is defined precisely in terms of the displacement of the
cell interfaces (a distance), and not in terms of cell volumes. The latter could be considered an added consideration of the effect
of radial stretching in the advective transport effect, which is our current interpretation. Nonetheless, it could also be interpreted
as another potentially different form of transport, not purely advective. We do not elaborate further on this conjecture.

This concludes the implementation of the deterministic S-ODT advancement process, including the FCE corrector step. The
new cell sizes and velocities, ∆r̂i,n+1 and u†

i,n+1, are taken as the values of cell sizes and velocities for the beginning of a new
streamwise advancement cycle, respectively. Although the FCE was previously explained with reference to the deterministic
advancement, it is likewise applied during eddy events, as commented in Section 2.2.1. In such case, the velocity u∗

i,n+1 refers
instead to the discrete mapped and kernel transformed velocity, which will be used for an alternative FCE corrector step for
S-ODT eddy events, following the same logic given by Eqs. (A48) and (A50).

We remark that the FCE step implies an additional coupling of both semi-negative and semi-positive radial domains due to
the cell interface shifting (advection), which is not present in the T-ODT formulation. As such, the FCE step may introduce
other issues related to the previously commented T-ODT numerical artifact of domain decoupling (due to artificial boundary
conditions at r̂ = 0). In principle, the artificial discontinuity at the pole may shift positions due to the cell rearrangement implied
in the FCE step for the cylindrical S-ODT formulation. This may result in worsened statistical flow moments evaluated using
flux balance schemes, see Appendix A.5. In any case, the inherent coupling of both semi-negative and semi-positive radial
domains during the FCE step under the presence of numerical stiffness at the pole (due to the artificial homogeneous Neumann
boundary condition), would result in a very large advective transport contribution.

Previous comments made for the T-ODT formulation concerning alleviation of the numerical artifact around the pole at larger
Reynolds number flows should still be valid in the context of the S-ODT formulation. However, we have not evaluated this
directly in the present work, since we only carried out S-ODT simulations at one specific Reτ , see Section 3.

A.4 Considerations on the dynamical mesh-adaption procedure

A detailed description of the dynamical mesh-adaption operations taking place in ODT can be found in [22]. The adaptive
grid ODT code has been used extensively in previous investigations for both temporal and spatial formulations, e.g., [27, 29].
Nonetheless, details regarding the conservative operations for cell merging and splitting have not been discussed in detail in any
publication other than that of [22]. Given that this work discusses conservative T-ODT and S-ODT formulations, it is of interest
to briefly mention some related issues here.

A.4.1 Cell merging and splitting in T-ODT

We limit the discussion of this section to the T-ODT constant density cases evaluated in the present work. In constant density,
local conservation of mass in a cell is trivial, as discussed in Section 2.1.2. Cell property profiles are assumed constant within
cells. The splitting of cells during dynamical mesh-adaption is resolved here in the most straightforward way. The neighboring
cells are partitioned by length in the planar formulation (and by volume in the cylindrical formulation) while maintaining the
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properties uniform or constant within the partitioned cells. In this way, the splitting operation is fully conservative. Merging
of two cells during mesh adaption observes mass and momentum conservation, such that the merging operation is also fully
conservative. The mass of each cell previous to the merge operation is calculated as ρ∆ξm+1

i /(m + 1). For the merge of two cells,
say i and i + 1, mass conservations implies, for constant density, that the merged cell has mass ρ∆Ω, where ∆Ω is the volume of
the resulting merged cell,

ρ∆Ω = ρ
[
∆ξm+1

i

m + 1
+
∆ξm+1

i+1

m + 1

]
, which simplifies to ∆Ω =

[
∆ξm+1

i

m + 1
+
∆ξm+1

i+1

m + 1

]
(A51)

Algorithmically, Eq. (A51) is implemented by setting the boundaries of the merged cell as the opposite extreme boundaries of
the neighbor cells i and i + 1 undergoing the merge operation. This implies then volume conservation during cell merging. Any
velocity component uk,M (for k ∈ {1, 2, 3}) at the merged cell M is then calculated for momentum conservation as

uk,M =
ρuk,i

∆ξm+1
i

m+1 + ρuk,i+1
∆ξm+1

i+1
m+1

ρ∆Ω
, which simplifies to uk,M =

uk,i∆ξ
m+1
i + uk,i+1∆ξ

m+1
i+1

∆ξm+1
i + ∆ξm+1

i+1
(A52)

Note that although (specific) mass and momentum are conserved during cell merging upon application of Eq. (A51) and (A52),
(specific) kinetic energy, ukuk/2 (considering the Einstein summation rule), cannot be simultaneously conserved. This is because
the application of the procedure given by Eq. (A52) for two cells observing uk,iuk,i/2 and uk,i+1uk,i+1/2, does not yield the same
result as uk,Muk,M/2. Therefore, the cell merging operation introduces numerical diffusion in the form of loss of conservation
(dissipation) of kinetic energy. As evidenced by the T-ODT results presented in this work, see specifically Section 4.5, this
numerical effect is deemed negligible in the T-ODT planar formulation. The effect is also small, yet noticeable, in the T-ODT
cylindrical formulation.

A.4.2 Cell merging and splitting in S-ODT

S-ODT conservation laws require numerical flux balance before and after the cell splitting and cell merge operations. The
splitting of cells may be carried out as in T-ODT, such that the procedure remains as a fully conservative operation in S-ODT.
Having said that, an important issue is present during cell merging. The streamwise mass flux of each cell previous to the merge
can be calculated, using uk for k = 3 (the streamwise velocity component), as ρu3∆ξ

m+1
i /(m + 1). For the merge of cells i and

i + 1, considering constant density, the merged cell M observes a resulting streamwise mass flux ρu3,M,U∆ΩU such that

ρu3,M,U∆ΩU = ρ
[

u3,i
∆ξm+1

i

m + 1
+ u3,i+1

∆ξm+1
i+1

m + 1

]
, which simplifies to u3,M,U∆ΩU = u3,i

∆ξm+1
i

m + 1
+ u3,i+1

∆ξm+1
i+1

m + 1
(A53)

In traditional unconfined S-ODT flow formulations, see [22, 29], merged momentum fluxes for velocity components uk,M,U at
cell M (here using the subindex U to indicate reference to the unconfined flow formulation), are calculated upon observation of
Eq. (A53) as

ρu3,M,Uuk,M,U∆ΩU = ρ
[

u3,iuk,i
∆ξm+1

i

m + 1
+ u3,i+1uk,i+1

∆ξm+1
i+1

m + 1

]
, leading to uk,M,U =

u3,iuk,i∆ξ
m+1
i + u3,i+1uk,i+1∆ξ

m+1
i+1

u3,i∆ξ
m+1
i + u3,i+1∆ξ

m+1
i+1

(A54)

Upon calculation of uk,M,U , and more specifically, of u3,M,U by Eq. (A54), ∆ΩU from Eq. (A53) can be calculated as

∆ΩU =
u3,i

∆ξm+1
i

m+1 + u3,i+1
∆ξm+1

i+1
m+1

u3,M,U
(A55)

The calculation of ∆Ω by Eq. (A55), using u3,M,U determined by Eq. (A54), implies a change in the resulting volume by the two
merged cells. This transforms, globally, into a violation of the confinement constraint required for the present confined flow
S-ODT formulation. To that extent, ∆ΩU is substituted by ∆ΩC (confined) calculated instead for volume conservation as in the
T-ODT formulation for ∆Ω, Eq. (A51). For the determined ∆ΩC, the merged streamwise velocity u3,M,C for confined flow at
cell M can then be calculated by Eq. (A53) as

u3,M,C =
u3,i∆ξ

m+1
i + u3,i+1∆ξ

m+1
i+1

∆ξm+1
i + ∆ξm+1

i+1
(A56)
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In practice, this simply implies that Eq. (A54) can be used for confined flow with the exception of the velocity component k = 3,
which must be calculated using Eq. (A56). This in turn implies that, while the streamwise mass flux is numerically balanced
before and after a cell merging operation, the momentum flux due to streamwise advection ρu3,M,Cu3,M,C∆ΩC is not. This is
partly the reason why the mesh adaption procedure in S-ODT is seen to have a larger numerical diffusion effect in the calculation
of contributions to the streamwise momentum as seen in Section 4.5.

A.5 Reynolds stresses and TKE budgets

As shown in Kerstein et al. [32], equivalences between DNS and ODT statistical quantities can be established by comparing the
mean ODT and RANS momentum equations. We illustrate these equivalences with reference to Reynolds stresses and turbulent
kinetic energy (TKE) budgets. For planar geometry, the findings in Kerstein et al. [32] for T-ODT are summarized next, and then
extended to S-ODT by following the strategy outlined by [34]. Afterwards, we introduce the equivalences for the cylindrical
geometry. For convenience, we rely on an index notation for the velocity vector, uk, where k ∈ {1, 2, 3} are the spanwise,
wall-normal, and streamwise components in the planar Cartesian formulation, while k ∈ {1, 2, 3} are the azimuthal, radial, and
streamwise components in the cylindrical formulation. As usual, constant density ρ and kinematic viscosity η are assumed.

A.5.1 Planar T-ODT formulation

A mathematical representation of the T-ODT momentum evolution equation in the planar case is obtained by rewriting Eq. (9)
for Cartesian coordinates, in an Eulerian framework and a differential form. This is,

∂uk

∂t
= –

1
ρ

dp
dz
δk3 + η

∂2uk

∂y2 + Mk + Kk. (A57)

We have used δk3 as a delta operator with δk3 = 1 for k = 3, and δk3 = 0 for k ̸= 3. We retain the use of the index notation and of
dz, and ∂y, for clarity. There is no mean flow in direction y aligned with the ODT domain. The turbulent advection is represented
by eddy events. Mk + Kk stands for the combined effects of the triplet-map (Mk) and kernel (Kk) operations on the ODT velocity
component uk [32]. This also follows the notation introduced by Eq. (2). Kk can be formally decomposed into transport and
scrambling contributions, symbolically Kk = Tk + Sk, where scrambling refers to momentum changes due to TKE redistribution
among velocity components. Momentum conservation requires Sk to integrate to zero, but apart from this constraint, there is
no unique way to decompose Kk as indicated. The choice Sk = 0 is preferred due to the absence of momentum scrambling
contributions in the mean Navier-Stokes momentum equation [32], so Kk is replaced by Tk in what follows.

It is instructive to compare Eq. (A57) with the steady state channel flow RANS momentum equation,

0 = –
1
ρ

dp
dz

+ η
∂2u3

∂y2 –
∂v′u′3
∂y

(A58)

Note that we have resorted to the notation v′u′3 to indicate the Reynolds shear stress. Converse to Eq. (A58), the mean T-ODT
momentum evolution is,

0 = –
1
ρ

dp
dz

+ η
∂2u3

∂y2 + M3 + T3 (A59)

Here and for all other formulations considered in the appendix, we invoke statistical stationarity unless noted otherwise, allowing
us to perform a temporal Reynolds averaging, denoted by overbars, and to set the time-derivative of the averaged streamwise
velocity to zero in the averaged equation, i.e., ∂u3/∂t = 0. For time-developing flow, the Reynolds averaging would be applied at
chosen instants or in chosen time windows to an ensemble of simulated flow realizations and ∂u3/∂t would be retained as a
nonzero value. It is straightforward to verify that the Reynolds stress component v′u′3 in the T-ODT planar case is given by

I3 ≡ –
∫ y

–δ
(M3 + T3)dy∗ = v′u′3. (A60)

We have introduced the notation I3 to indicate the equivalence with the Reynolds stress. We note that, in the context of the
turbulent transport or Reynolds stress, v′ ≠ u′2 in ODT. Here, u2 is the velocity component which decides upon implementation
of eddy events according to the eddy frequency formula (∆tl)–1, Eq. (5), and which is subject to the numerical integration of its
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corresponding transport PDE. Conversely, v′ in the present context is a representative ODT fluctuating contribution, which can
not be determined directly, and which is responsible for the turbulent (advective) transport.

There are different ways in which Eqs. (A59) and (A60) can be used to evaluate the Reynolds stress in ODT. The first one is
to apply the integration with respect to the wall-normal coordinate in Eq. (A59), while solving for the equivalence of the integral
of M3 + T3 given by Eq. (A60), i.e., the Reynolds stress v′u′3. This is precisely the evaluation carried out by Eq. (26) in Section 5,
which enables the evaluation of the unknown v′u′3 given the imposed FPG and the mean velocity profile u3 determined from
simulation output. Another way is to evaluate the y profile of M3 + T3 based on the time rate of eddy-induced change of u3 as a
function of y. Operationally, this is done at given y using the estimate∑

eddies (∆u3)
∆t

= M3 + T3 (A61)

The time interval ∆t is the total one resulting from aggregated sampling time intervals, such that it is consistent with the
summation indicated in the numerator of Eq. (A61) (note that if an eddy is sampled but not implemented, there is no change in
the velocity profile). We remark that the evaluation of M3 + T3 refers to changes ∆u3 that are caused by triplet maps and kernel
procedures.

The availability of distinct methods for evaluating v′u′3 is a consequence of statistical stationarity, which assures that the
overall ∆u3 changes induced by the T-ODT deterministic viscous advancement are locally balanced over time by the stochastic
eddy-induced changes. In this sense, it is important to stress that a more faithful version of Eq. (A59) would imply replacing the
FPG source term and the diffusion term by another term D3 which involves all changes induced by the T-ODT deterministic
viscous advancement. That is, for a given y,

D3 =
∑

d. adv. (∆u3)
∆t

≈ –
1
ρ

dp
dz

+ η
∂u3

∂z
(A62)

As per Eq. (A59) and (A62), it is only possible to equate D with the sum of (–1/ρ)dp/dz and η∂2u3/∂y2, as long as the
accumulation of said (–1/ρ)dp/dz and η∂2u3/∂y2 over all deterministic advancement steps (d. adv. notation in Eq. (A62)) equate
the averages of the said average pressure gradient and the viscous term. For the pressure gradient, this is not an issue, since it is
simply a constant. However, the sum of the different viscous terms integrated in time does not necessarily equal the viscous
diffusion of the average velocity u3. Several factors may contribute to the discrepancies. Examples are the way in which the
values of the velocity are sampled to form u3 (e.g., during the deterministic advancement or during eddy events, or considering
an average between them), the numerical diffusion due to mesh adaption which is not included in the balance equation (A59),
and even the time-integration method used to solve the deterministic advancement with its associated truncation error (the latter
being accumulated in Eq. (A62)). Therefore, the availability of both calculation methods for v′u′3 is useful in practice for code
verification, since only the calculation method by Eq. (A60) using Eq. (A61), satisfies the average balance of momentum in ODT
with the counterpart of Eq. (A62).

For the evaluation of the TKE budgets, the starting point is the momentum evolution equation, Eq. (A57), multiplied by uk,
which leads to the ODT kinetic energy transport equation for velocity component uk,

1
2
∂u2

k

∂t
= –

u3

ρ

dp
dz
δk3 + ηuk

∂2uk

∂y2 +
1
2

(Mkk + Kkk) (A63)

This expression is rewritten with the help of some algebra as

∂u2
k

∂t
= –

2u3

ρ

dp
dz
δk3 + η

∂2u2
k

∂y2 – 2η
(
∂uk

∂y

)2

+ Mkk + Kkk. (A64)

In the last two terms, the subscript kk generically denotes that the average is evaluated by replacing ∆uk from Eq. (A61), by
∆(ukuk), where the summation in the modified equation is over triplet map (kernel) contributions for Mkk (Kkk). Note that we
have used ukMk = (1/2)Mkk, since uk∆uk could in principle be rewritten as ∆u2

k = (1/2)∆(ukuk). The kernel term in Eq. (A64) is
now expressed as Kkk = Tkk + Skk. Note also that we omit the application of the Einstein summation rule over repeated indices for
clarity. This is the case in Eq. (A64) and elsewhere in this Appendix, unless otherwise noted.

We now pursue a derivation of the generalized T-ODT TKE equation which is valid both for steady and unsteady flows.
To that extent, Eq. (A64) is averaged without invoking statistical stationarity. The identity u2

k – uk
2 = u′2

k , the definition
Ikk = –

∫ y
–δ(Mkk + Tkk)dy∗, as well as the subtraction of Eq. (A59) multiplied by 2uk, yield the equation for the average of the
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square of the fluctuation velocity u′
k, see [32] for details,

∂u′2k
∂t

= η
∂2u′2k
∂y2 – 2η

(
∂u′k
∂y

)2

–
[
∂

∂y
(Ikk – 2ukIk) – Skk

]
– 2Ik

∂uk

∂y
. (A65)

It is noted that a subtraction and addition of 2Ik∂uk/∂y is required in order to obtain the final expression.
The time derivative term of the average of the square of the fluctuation velocity u′k on the LHS of Eq. (A65) can be neglected if

the statistical stationarity of the flow is invoked. Comparing Eq. (A65) to the generalized TKE equation in a Cartesian coordinate
system (see, e.g., Eq. (5.164) in [12]), it follows that the advancement equation for TKE = (1/2)(u′21 + u′22 + u′23 ) is obtained by
summing the advancement equations for u′21 , u′22 , and u′2

3 and multiplying by 1/2. As in Kerstein et al. [32], the resulting terms
for production PODT, dissipation εODT, viscous transport TV ,ODT, and advective transport TA,ODT of the TKE budgets are,

PODT = –
∑

k

Ik
∂uk

∂y
, εODT =

∑
k

η

(
∂u′k
∂y

)2

, TV ,ODT =
η

2

∑
k

∂2u′2k
∂y2 , TA,ODT =

1
2

∑
k

[
∂

∂y
(Ikk – 2ukIk) – Skk

]
, (A66)

As detailed in [32],
∑

k Skk =
∑

k Skk = 0 because scrambling is defined as energy-conserving TKE redistribution among velocity
components at given y without changing the total TKE. (Kernel-induced change of the total TKE at given y is attributed to
kernel-induced transport of individual velocity components, which is subsumed in the terms Tkk.) Therefore, no assumption
about the partition of Kkk into contributions Tkk and Skk for given k is required in order to evaluate the average of

∑
k Tkk because

the latter is equal to the average of
∑

k Kkk, whose evaluation follows from the discussion below Eq. (A64).
It is noted that the formula for εODT in Eq. (A66) is based on time-averages of the mean velocity profile and of the streamwise

kinetic energy profile. The discussion in this case is similar to the one before requiring the distinction between the average
pressure gradient and the average viscous term with the term D3. Although, in general, the differences between D3 and
(–1/ρ)dp/dz + η∂2u3/∂y2 are not very significant, it is expected that there are larger differences in Eq. (A65) when average
profiles are used instead of the actual balance terms for the calculation of both TV ,ODT and εODT. This is because both the viscous
transport and dissipation terms are nonlinear functions of the velocity profile. Additionally, the symbolic multiplication by u3

used to obtain Eq. (A64) is only adequate for a specific type of numerical integration of the ODT momentum equation, given that
there is no kinetic energy equation being solved directly in ODT. This motivates the introduction of the alternative dissipation
term εbal discussed in Section 5, which enforces the correct balance in Eq. (A65). Last, we comment on the so-called advective
transport term in ODT, TA,ODT. As previously explained in [32], the lack of explicit representation of pressure fluctuations in
ODT precludes the partitioning of advective transport into turbulent transport and pressure transport as they are usually defined
based on Navier-Stokes analysis. Therefore, these Navier-Stokes terms are combined for the purpose of comparison to ODT
results. Pressure-fluctuation effects are implied by ODT eddies because they idealize turbulent motions that are driven by local
unsteady pressure gradients. No attempt has been made to infer the pressure fluctuations that the eddies imply, although the
novel confined S-ODT formulation is suggestive in this regard, see next.

A.5.2 Planar S-ODT formulation

The instantaneous momentum evolution in the spatial formulation is obtained by rewriting Eq. (16) for Cartesian coordinates, in
an Eulerian framework and a differential form. This is,

∂u3uk

∂z
= η

∂2uk

∂y2 + Mk + Tk + Ak + Fk (A67)

Although the overall framework discussed here is motivated in Appendix C of [21], in the sense that Eq.(A67) is related to
truncated forms of the Navier-Stokes equations, a unique formal mathematical derivation based on the terms in the full Navier-
Stokes equation has not been identified. The reduced 1-D formulation lacks, in this context, relevant mechanisms of physically
consistent local and instantaneous 3-D flow. One consequence, noted at the end of A.5.1, is that all ODT advective transport
must be lumped into one TKE budget term because there is no basis for discriminating the individual contributions to advective
transport. S-ODT advective transport operations that are lumped in this way are those appearing also in the temporal formulation.
On one hand, Mk and Kk, is used as in Eq. (10), with the substitution of Kk by Tk as in A.5.1. On the other hand, the additional
term Ak denotes the advective part of the FCE step, as described in Section 2.2.3, while Fk denotes the forcing effect of the FCE
step, which is analogous to a pressure-gradient forcing term, but it is unsteady and nonuniform in y.
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A necessary condition in order to compare with the traditional RANS momentum equation is to perform an averaging
procedure on Eq. (A67). Invoking streamwise homogeneity (although the more general case of spatially developing flow can also
be treated) after applying a streamwise Reynolds averaging to Eq. (A67), analogous to the temporal averaging in Eq. (A59), gives

0 = η
∂2u3

∂y2 + M3 + T3 + A3 + F3. (A68)

Analogously to T-ODT, Mk and Tk in Eq. (A68) are the mean rates of change relative to z that are induced by triplet maps
and kernels, respectively. In contrast to the temporal data-reduction procedure expressed symbolically by Eq. (A61), the rate of
eddy-induced change of the flux of uk (due to u3) in S-ODT per streamwise interval ∆z is∑

eddies ∆ (u3uk)
∆z

=
∑

eddies

{
u3(f (y))u∗

k (y) – u3(y)uk(y)
}

∆z
= Mk + Tk. (A69)

The notation uk(f (y)) corresponds to the (planar) mapped profile of the velocity uk, while uk(y) is the corresponding profile prior
to mapping during an eddy event. u∗k (y) here denotes the velocity component upon application of triplet map and kernel effects,
uk(f (y)) + ckK(y) + bkJ(y). The summation on the LHS of Eq. (A69) implies a summation over eddy events.

The sum Ak + Fk is the mean rate of FCE-induced change of the momentum flux relative to z, as explained in Section 2.2.3.
During an eddy event, the FCE induces a momentum flux change (due to u3) from u3(f (y))u∗

3 (y) to u2†
3 (y†) for velocity component

k = 3, and from u3(f (y))u∗k (y) to u†3(y†)u∗k (y†) for components k ̸= 3. We use y† here to indicate the grid resulting after application
of the FCE step. For deterministic advancement, in order to simplify the notation, we note u†k,n+1(yn+1) simply as u†k (y†), and we
take similar considerations noting un(yn) as u(y), or u∗

k,n+1(yn) as u∗k (y). On this basis, Ak + Fk is evaluated as

Ak + Fk =

∑eddies

[
u2†

k (y†) – u3(f (y))u∗k (y)
]

∆z
+

∑
d. adv.

[
u2†

k (y†) – u3(y)u∗k (y)
]

∆z

 δk3

+

∑eddies

[
u†

3(y†)u∗
k (y†) – u3(f (y))u∗k (y)

]
∆z

+

∑
d. adv.

[
u†

3(y†)u∗
k (y†) – u3(y)u∗k (y)

]
∆z

 δk ̸=3

(A70)

Note that we use δk ̸=3 to indicate that δk ̸=3 = 1 if k ̸= 3, and δk ̸=3 = 0 if k = 3. The decomposition of the sum Ak + Fk is treated
as follows. Ak subsumes the advective contributions to the FCE explained in Section 2.2.3. The FCE-induced momentum flux
changes which are purely advective, are then of the form

Ak =

∑
eddies

[
u†3(y†)u∗k (y†) – u3(f (y))u∗k (y)

]
∆z

+

∑
d. adv.

[
u†3(y†)u∗k (y†) – u3(y)u∗k (y)

]
∆z

(A71)

For k = 3, the source contribution F3 to the momentum flux is calculated summing the deterministic advancement and eddy
event contributions as

F3 =

∑
eddies

[
u2†

3 (y†) – u†
3(y†)u∗3 (y†)

]
∆z

+

∑
d. adv.

[
u2†

3 (y†) – u†3(y†)u∗3 (y†)
]

∆z
(A72)

F3 is the equivalent average pressure change which is induced as the net momentum flux source in S-ODT. Note that transported
scalars, such as uk for k ̸= 3, satisfy the condition Fk = 0, such that only F3 ̸= 0.

We now discuss the calculation method for the Reynolds stress in S-ODT. One calculation method considers the evaluation of
the mean velocity profile, as in T-ODT. The same comments concerning the use of the average velocity profile instead of the
deterministic advancement changes are applicable. We calculate the Reynolds stress (consistent with the balance of Eq. (A68)) as,

v′u′3 = I3 = –
∫ y

–δ

(
M3 + T3 + A3

)
dy∗ (A73)

Next, we obtain the S-ODT TKE flux equation. The appearance of the terms Ak and Fk allows free interchange of the velocity
u3 into or out of the partial streamwise derivative on the LHS of Eq. (A67), reflecting an analogous effect of the enforcement of
the continuity equation when transforming from the strong to the weak form, or vice-versa, of the Navier-Stokes equation. That
is, the presence of Ak and Fk is the formal equivalent of the mass conservation enforcement due to the FCE step in the S-ODT
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formulation at discussion here. The corresponding Reynolds average equation associated to Eq. (A67) is, without invoking
statistical streamwise homogeneity,

∂u3 uk

∂z
= –

∂(u′
3u′k)
∂z

+ η
∂2uk

∂y2 + Mk + Tk + Ak + Fk. (A74)

The Reynolds shear stresses are defined by

v′u′k = Ik = –
∫ y

–δ

(
Mk + Tk + Ak

)
dy∗. (A75)

The corresponding kinetic energy of each velocity component is then the multiplication of Eq. (A67) by uk,

uk
∂u3uk

∂z
=ηuk

∂2uk

∂y2 +
1
2

(Mkk + Tkk + Akk + Fkk + Skk) , such that

1
2
∂(u3u2

k)
∂z

=
η

2
∂2u2

k

∂y2 – η
(
∂uk

∂y

)2

+
1
2

(Mkk + Tkk + Akk + Fkk + Skk)
(A76)

Here, quantities with subscripts kk are contributions to the induced rate of change of u3u2
k with respect to z, defined analogous to

Eq. (A69 - A72). In that sense, M33 + T33 is responsible for a kinetic energy flux change due to u3 from u3
3(y) to u3(f (y))u∗3

2(y).
Similarly, A33 induces the change from u3(f (y))u∗

3
2(y) to u†3(y†)u∗3

2(y†), while F33 changes it to u3†
3 (y†). Both A33 and F33 being

applicable for the deterministic advancement and eddy event contributions. As in the T-ODT TKE budget, Skk is included in Eq.
(A76) although Sk is omitted from Eq. (A67) in order to indicate that it is again eliminated from the TKE budget as a matter of
definition without requiring any additional modeling assumptions. Following a similar derivation procedure as in T-ODT, we
obtain the equation for the average of the square of the fluctuation velocity u′k,

u3
∂u′2k
∂z

= η
∂2u′2k
∂y2 – 2η

(
∂u′k
∂y

)2

–

[
∂u′

3u′ku′k
∂z

+
∂

∂y
(Ikk – 2ukIk) –

(
Fkk – 2ukFk + Skk

)]
–
(

2u′
3u′k

∂uk

∂z
+ 2Ik

∂uk

∂y

)
(A77)

where we have used the definition
Ikk = –

∫ y

yw

(
Mkk + Tkk + Akk

)
dy∗ (A78)

Finally, the generalized TKE budgets in planar S-ODT are,

PODT = –
∑

k

(
u′3u′

k
∂uk

∂z
+ Ik

∂uk

∂y

)
, εODT =

∑
k

η

(
∂u′

k

∂y

)2

, TV ,ODT =
η

2

∑
k

∂2u′2k
∂y2 ,

TA,ODT =
1
2

∑
k

[
∂u′

3u′ku′k
∂z

+
∂

∂y
(Ikk – 2ukIk)

]
– TΓ,ODT, TΓ,ODT =

1
2

∑
k

(
Fkk – 2ukFk + Skk

)
.

(A79)

Although
∑

k Skk = 0 as in the temporal formulation, we note that the advective transport term incorporates now a transport of
kinetic energy by the effects of a source of momentum flux TΓ,ODT. The latter could be analogous to the pressure transport in the
conventional TKE equation. Nonetheless, the contribution of TΓ,ODT to the TKE budgets in the cases evaluated in this work was
shown to be negligible, see Section 5. Similar observations concerning the calculation of an alternative εbal follow as in T-ODT.

A.5.3 Cylindrical T-ODT formulation

We now introduce the derivation of the ODT TKE equation for the cylindrical formulation. This derivation provides an important
insight regarding assumptions made in the cylindrical ODT formulation. In order to derive the cylindrical TKE budgets, we
follow the same methodology as in the planar case. The starting point in this case is the T-ODT cylindrical momentum equation
given by rewriting Eq. (9) in an Eulerian differential framework in cylindrical coordinates as follows:

∂uk

∂t
= –

1
ρ

dp
dz
δk3 +

η

r
∂

∂r

(
r
∂uk

∂r

)
+ Mk + Tk (A80)



An improved One-Dimensional Turbulence model formulation for pipe and channel flows 47

Note that we will use the coordinate system r and not r̂ in this appendix, motivated by the symmetry of all statistical flow
moments around the pole. Note also that our cylindrical formulation specializes to the case with k = 3, due to our choice of the
ODT model parameter α = 0, see Section 4.1. Eq. (A80) is compared with the steady pipe flow RANS momentum evolution,

0 = –
1
ρ

dp
dz

+
η

r
∂

∂r

(
r
∂u3

∂r

)
–

1
r

∂
(

rv′u′3
)

∂r
. (A81)

The mean T-ODT momentum evolution is in this case, invoking statistical stationarity,

0 = –
1
ρ

dp
dz

+
η

r
∂

∂r

(
r
∂u3

∂r

)
+ M3 + T3 (A82)

Comparing Eqs. (A81) and (A82), the Reynolds stress component v′u′
3 in the T-ODT cylindrical case can then be defined

analogously to the T-ODT planar formulation. Indeed, the integral of M3 + T3 yielding v′u′3 can be calculated just like in the
planar case by two possible methods. The first method is by the integration of the mean velocity profile. The second method
requires the evaluation of the changes in the velocity profiles due to mapping and kernel operations (eddy events), in order
to evaluate M3 + T3 by Eq. (A61). Nonetheless, unlike in the planar case, the integration of M3 + T3 is done along the radial
direction dr using the radial weight r. This yields the Reynolds stress rv′u′3 as a radially weighted flux.

rv′u′3 = rI3 =
∫ δ

r
(M3 + T3)r∗dr∗ (A83)

It is important to stress again that ODT simulations take place in a dynamically adaptive grid. The only possible way in which
statistics can be gathered, either by means of an online temporal average in T-ODT, or an online streamwise average in S-
ODT (for the case of the statistically stationary and statistically streamwise homogeneous flows at discussion here), is by the
interpolation of flow quantities from the irregular, dynamically adaptive grid, to a fixed (and in our case equidistant) statistics
grid. This supposes that interpolation methods are inherently implied when calculating averages. In practice, we employ cubic
spline interpolations, such that we obtain high order reconstructions of the flow for use in the online averaging procedure in the
fixed statistics grid. Consider now the planar T-ODT formulation, where the Reynolds stress is calculated by Eq. (A60). Using a
midpoint rule for evaluation of the integral in Eq. (A60) leads to an approximation with a second-order spatial numerical error
term, such that

v′u′3(y) = –
yi<y∑

i,yi>–δ

(
M3i + T3i

)
∆y + O((∆y)2) (A84)

We have used ∆y to indicate the equidistant and fixed statistics grid spacing in Eq. (A84). The numerical error O(∆y2) refers
in this case, solely, to the midpoint rule used for the evaluation of the integral in Eq. (A60). We note that v′u′

3 is properly
reconstructed with a numerical simulation order of accuracy equivalent to that obtained by all flow variables in the ODT flow
simulation (implicit Euler time-integration method using linear interpolation for the diffusion flux, see Appendix A.3). Consider
now the discrete form of Eq. (A83), when solving for the Reynolds stress in cylindrical coordinates,

v′u′3(r) = –
1
r

ri>r∑
i,ri<δ

(
M3i + T3i

)
ri∆r +

O((∆r)2)
r

(A85)

Eq. (A85) shows that the numerical error term due to the numerical integral approximation will always be responsible for large
errors in the reconstruction of the Reynolds stress when r → 0. This is an important issue to consider when evaluating cylindrical
ODT Reynolds stresses. To that extent, the conservative ODT cylindrical formulation is only able to confidently predict the
radially weighted Reynolds stress rv′u′

3, and not the Reynolds stress itself v′u′
3, in the presence of even small numerical errors.

The alternative method for calculation of the Reynolds stress, v′u′3bal used in Section 5, that is, using the mean velocity profile
instead of the changes due to eddy events, provides better results in this context. Another clear issue when computing the
Reynolds stress by Eq. (A85) is that it is not possible to compute the numerical integral throughout the entire radial r̂ numerical
domain, since doing that would result in a blowup term at r̂ = 0. Thus, Eq. (A85) can only be evaluated on either the semi-
negative or the semi-positive radial domain, ensuring that |̂r| > 0. The numerical integration from both walls towards r̂ → 0, or
alternatively, from |̂r| > 0 to each wall separately, are then suitable numerical integration strategies. This is also the natural way
to solve for the pole singularity in FVMs, i.e., setting fluxes from the degenerate volume element faces at r = 0 to zero.
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In order to obtain the cylindrical ODT TKE equation, we proceed by finding the kinetic energy equation of the u3 streamwise
velocity component,

1
2
∂u2

3

∂t
= –

u3

ρ

dp
dz

+ η
u3

r
∂

∂r

(
r
∂u3

∂r

)
+

1
2

(M33 + T33 + S33) ,

∂u2
3

∂t
= –

2u3

ρ

dp
dz

+
η

r
∂u2

3

∂r
+ η

∂2u2
3

∂r2 – 2η
(
∂u3

∂r

)2

+ M33 + T33 + S33

(A86)

Analogously to the planar case, the equation for the average of the square of the fluctuation velocity u′
3 can be obtained as

∂u′23
∂t

=
η

r
∂

∂r

(
r
∂u′23
∂r

)
– 2η

(
∂u′3
∂r

)2

–
{

1
r
∂

∂r
[r (I33 – 2u3I3)] – S33

}
– 2I3

∂u3

∂r
. (A87)

Here, we have used the notation I33 = –(1/r)
∫ r

0 (M33 + T33)r∗dr∗, with evaluation of M33 + T33 as in the planar formulation. A
subtraction and addition of 2I3∂u3/∂r is required, just as in the planar case, in order to obtain the final expression. It is interesting
to note that, when comparing this expression to the generalized TKE equation in cylindrical coordinates (see, e.g. Eqs. (B.31-
B.33) in Shiri, 2010 [56]), a series of terms could be missing in the model if we try to generalize Eq. (A87) to the radial and
tangential fluctuating velocity components, u′2

1 and u′2
2 . In a cylindrical coordinate system, the diffusion evolution equations for

u1 and u2 do not have in general the same terms as u3 (in contrast to the planar case). In this sense, the budget terms obtained by
analyzing Eq. (A87) represent only radial fluxes, a radial TKE production term, and interestingly enough, a planar dissipation
component. In order to be able to obtain a more consistent representation of the TKE budget terms in a vector formulation,
different equations for the radial and tangential velocity components would be required, not only in the diffusion evolution PDEs,
but possibly in the same eddy implementation procedure. Although this is a minor technicality, given that the non-streamwise
velocity components are just interpreted as energy containers in the ODT vector formulation [32], we maintain a consistent
representation by applying a scalar treatment of the momentum and energy, which we accomplish by setting α in the cylindrical
formulation to 0, and using the corresponding momentum equation consistent with a single component formulation, Eq. (9), see
also the discussion in Sections 2.2.2 and 4.1.

The TKE budget terms are consequently identified based on Eq. (A87) as

PODT = –I3
∂u3

∂r
, εODT = η

(
∂u′

3

∂r

)2

, TV ,ODT =
η

2r
∂

∂r

(
r
∂u′23
∂r

)
, TA,ODT =

1
2r

∂

∂r
[r (I33 – 2u3I3)] , (A88)

where S33 is omitted from the advective transport term TA,ODT since there is no kernel application during an α = 0 eddy event,
despite kernel functions being still used to determine the eddy occurrence frequencies.

A.5.4 Cylindrical S-ODT formulation

Similar to the spatial planar formulation, the generalized spatial ODT cylindrical momentum evolution for u3 is given by

∂u3u3

∂z
=
η

r
∂

∂r

(
r
∂u3

∂r

)
+ M3 + T3 + A3 + F3. (A89)

Averaging Eq. (A89), results in

∂u3 u3

∂z
= –

∂u′3u′
3

∂z
+
η

r
∂

∂r

(
r
∂u3

∂r

)
+ M3 + T3 + A3 + F3. (A90)

The Reynolds stress component v′u′3 is then equivalent to I3, where

rv′u′3 = rI3 = –
∫ r

0

(
M3 + T3 + A3

)
r∗dr∗. (A91)

The evaluation of M3 + T3 and A3 is carried out as in the planar formulation by Eq. (A69) and (A71). Likewise, F3 in Eq. (A90)
can be evaluated by Eq. (A72).
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The equation for the average of the square of the fluctuation velocity u′
3 can be obtained using the definition

I33 = –
1
r

∫ r

0

(
M33 + T33 + A33

)
r∗dr∗, (A92)

such that
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(A93)

The TKE budget terms considering α = 0 (one velocity component) are then
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3
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1
2
(
F33 – 2u3F3

)
,

(A94)

with S33 again omitted from TA,ODT (or TΓ,ODT) for α = 0.

B EXTENDED RESULTS FOR THE CYLINDRICAL FORMULATION

B.1 Cylindrical formulation results at low Reynolds numbers using large values of Atf

In the following, we compare flow statistics obtained with the T-ODT and S-ODT cylindrical formulations for cases 500PT and
550PS. We use the calibrated value of Atf = 4 for Reτ ≈ 550, which yields steady state imbalances as seen in Section 4.5, and
the very large value Atf = 100, which ensures steady state numerical flux balancing.

Figure B4a shows a comparison of the mean velocity profiles. In this case, the sensitivity to Atf is larger for the T-ODT
cylindrical formulation.

Figure B4b shows a comparison of the Reynolds shear stress profile, calculated using two different methods. The first method
refers to u′v′bal, determined by the forced steady state balance of the RANS momentum equation, Eq. (26). The second method
refers to I3 as in Appendix A.5, accounting for the numerical average of advective flux contributions. Figure B4b shows that the
large value Atf = 100 achieves convergence of both calculation methods to the same result in both T-ODT and S-ODT, given that
numerical diffusion due to grid adaption is reduced.

Figure B5a shows a comparison of the streamwise RMS velocity profile. In this case, the larger value of Atf is responsible for
increased turbulence intensity levels away from the wall, close to the pole r = 0, in both the T-ODT and S-ODT cylindrical
formulations. This is related to the pole numerical artifacts discussed in Appendix A.3. We verify that it is not possible to achieve
monotonic decrease of the RMS velocity profile in the outer layer, as demanded by DNS, with the steady state numerical flux
balancing yielded by large values of Atf.

Finally, Figure B5b shows a comparison of the turbulence frequency ω+. We note that in the cylindrical ODT one velocity
component formulation, the TKE is given by k = u2

RMS/2. Figure B5b shows that larger values of Atf are responsible for increased
turbulence frequency levels away from the wall, which is not a trivial result given that k also increases for larger Atf away from
the wall, towards the pole.
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(a) (b)

F I G U R E B4 (a) Mean velocity profiles for turbulent pipe flow cases 500PT (T-ODT) and 550PS (S-ODT) using values of
Atf of 4 and 100. (b) Reynolds shear stress profiles for turbulent pipe flow cases 500PT (T-ODT) and 550PS (S-ODT) using
values of Atf of 4 and 100. Two methods for calculation of the Reynolds shear stress are shown, see text. DNS turbulent pipe
flow data from [46] is shown for reference in both (a) and (b).

(a) (b)

F I G U R E B5 (a) RMS streamwise velocity profiles for turbulent pipe flow cases 500PT (T-ODT) and 550PS (S-ODT) using
values of Atf of 4 and 100. (b) Turbulence frequency profiles for turbulent pipe flow cases 500PT (T-ODT) and 550PS (S-ODT)
using values of Atf of 4 and 100. DNS turbulent pipe flow data from [46] is shown for reference in both (a) and (b).
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