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Abstract

Modeling soot formation in turbulent nonpremixed combustion is a difficult problem. Unlike most
gaseous combustion species, soot lacks a strong state relationship with the mixture fraction due to
unsteady formation rates which overlap transport time scales, and strong differential diffusion between
gaseous species and soot. The conditional moment closure model (CMC) has recently been applied to
the problem of turbulent soot formation. A challenge in CMC modelling is the treatment of differential
diffusion. Three-dimensional direct numerical simulation (DNS) of a nonpremixed ethylene jet flame
with soot formation has been performed using a nineteen species reduced ethylene mechanism and a
four-step, three-moment, semi-empirical soot model. The DNS provides full resolution of the turbulent
flow field and is used to perform a-priori analysis of a recent CMC model derived from the joint scalar
PDF transport equation. Unlike other approaches, this CMC model does not require additional transport
equations to treat differentially diffusing species. A budget of the terms of the CMC equation for both
gaseous species and soot is presented. In particular, exact expressions for unclosed terms are compared to
typical closure models for scalar dissipation, cross dissipation, differential diffusion, and reactive source
terms. The differential diffusion model for gaseous species is found to be quite accurate, while that for
soot requires an additional model for the residual term.
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1. Introduction

Modeling and simulation of soot formation in
turbulent flames is a problem of important prac-
tical and theoretical interest. Soot is formed in
hydrocarbon flames in fuel-rich regions where in-
sufficient oxygen is present to fully convert fuel to
products. Soot emission results in reduced com-
bustion efficiency in devices such as engines, and
is an air pollutant. The majority of heat trans-
fer from sooting flames and fires arises from the
presence of soot in high temperature flame zones.
A sound physical understanding of soot formation
in turbulent flames and the ability to accurately
model the phenomenon is important for quantita-
tive design and optimization of combustion equip-
ment, and analysis and prediction of fire hazards.

Turbulent soot formation is a challenging prob-
lem as soot chemistry is complex (making univer-
sal chemical mechanisms difficult to create and

∗Corresponding Author; Tel.: (925) 294-6615; Fax:
(925) 294-2595
E-mail: david@crsim.utah.edu

computationally expensive to use). The optical
thickness of sooting flames makes experimental mea-
surements of detailed turbulent soot-flame struc-
ture difficult, and presently, only statistical quan-
tities such as means and variances are experimen-
tally available in sooting flames. Soot is a particle
phase with a low diffusivity, resulting in thin struc-
tures and strong differential diffusion between soot
and gaseous species. Unlike many nonpremixed
hydrocarbon flames of practical importance, mod-
eling soot formation in turbulent flames is com-
plicated by the lack of a strong state relationship
between soot and the mixture fraction. This prob-
lem arises from history effects associated with soot
formation and growth rates with timescale overlap
between reactive and transport processes. In addi-
tion, as noted, low soot diffusivity results in strong
differential transport of soot in the mixture frac-
tion coordinate.

The conditional moment closure (CMC) model
solves unsteady transport equations for reactive
scalars that are conditionally averaged on given
values of mixture fraction [1, 2]. The conditional
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mean scalars, along with a description of the mix-
ture fraction PDF allows a solution of the mean
flow. This conditioning allows more accurate clo-
sure of nonlinear reactive source terms. Kronen-
burg and Bilger [3] have developed a CMC for-
mulation allowing for differential diffusion (DD)
of chemical species, but requiring solution of addi-
tional transport equations to solve for restorative
terms associated with differential diffusion. This
CMC approach accounting for DD was extended to
soot formation in turbulent nonpremixed methane
flames [4], and recently applied to turbulent non-
premixed ethylene flames [5]. In both cases, good
agreement between simulation and experiment was
observed, whereas significant under prediction of
soot concentration resulted from neglecting DD.
Hewson et al. [6] have recently presented a new
CMC formulation for soot formation accounting
for effects of DD that does not require the solution
of additional transport equations, which signifi-
cantly reduces computational costs. The CMC for-
mulation was tested a-priori using one-dimensional
turbulence results applied to a pool fire configura-
tion.

We have performed three-dimensional direct nu-
merical simulation (DNS) of a nonpremixed, tem-
poral, planar ethylene jet flame with soot forma-
tion. Complex combustion chemistry, and a three-
moment, four-step, semi-empirical soot model were
employed with high spatial resolution. Detailed re-
sults of the simulation focusing on turbulent soot
formation and differential transport between soot
and mixture fraction are presented in Ref. [17].
In this paper, we use the DNS results to perform
an a-priori study of the CMC equations developed
by Hewson et al. [6]. A budget of terms in the
CMC equations is presented for both gaseous and
soot species. Exact expressions for unclosed terms
are compared to possible closure models for these
terms using conventional modelling assumptions.

2. DNS of the Turbulent Ethylene Flame

The DNS was performed using the code S3D,
developed at Sandia National Laboratories. S3D
solves the reacting Navier-Stokes equations using
an explicit, low-storage, fourth-order Runge Kutta
method for time integration [7]. Spatial deriva-
tives are approximated with eighth-order central
differences, and a tenth-order filter is applied to
remove any aliasing errors [8]. Property depen-
dent thermodynamic quantities are computed us-
ing Chemkin [9], and species diffusion fluxes are
computed with a mixture averaged formulation us-
ing Transport [10].

A reduced ethylene mechanism was developed
from a detailed mechanism using directed relation

graph methods, sensitivity analysis, and computa-
tional singular perturbation. The mechanism was
extensively validated for all conditions experienced
in the DNS, and consists of 19 transported species,
10 quasi-steady-state species, and 167 reactions.
See [11] for details.

The soot model is based on the Leung and
Lindstedt model [12], which has been used exten-
sively in simulation of turbulent sooting flames.
The model consists of four steps: nucleation, growth,
oxidation, and coagulation. The gaseous nucle-
ation and growth species is acetylene, C2H2, and
oxidation is written in terms of the oxygen concen-
tration. The soot particle size distribution (PSD)
is modeled using the method of moments. The first
three mass moments of the PSD are transported,
and closure of fractional moments is performed by
assuming a lognormal size distribution [13]. The
soot model is fully coupled with the gas phase in
terms of the mass and energy conservation. Soot
transport occurs primarily through thermophore-
sis, although Brownian diffusion is also implemented
[11].

Radiative heat transfer is simulated using the
optically thin model. The DNS length and times
cales are not sufficient to involve significant radia-
tive heat losses, and the optically thin model is
adequate.

The three-dimensional flow configuration is a
planar slot jet, with periodic boundary conditions
in the streamwise (hence the jet is temporally-
evolving) and spanwise directions. Nonreflecting
outflow boundary conditions are applied in the
cross-stream direction [14]. This configuration is
physically important and practically relevant. The
periodicity in two dimensions gives two directions
of statistical homogeneity, and the temporal evo-
lution maximizes the residence time of soot in the
domain for unsteady growth. Table 1 shows the
jet configuration parameters. In this table, H is
the initial height of the jet, ∆U is the velocity
difference between the interior fuel jet and the
surrounding oxidizer stream, u′ and L11 are the
velocity fluctuation and integral scale of homoge-
neous isotropic turbulence imposed in the fuel core
to trip the turbulent shear layers. Lx,y,z are the
domain lengths. A 30 micron grid spacing was
used and found to adequately resolve all gaseous
combustion species and velocity fields. The simu-
lation was run for a total of 50 characteristic jet
times. The nonpremixed flame is initialized us-
ing a steady laminar flamelet solution matching an
imposed hyperbolic transition (with characteristic
width δξ) between the fuel and oxidizer streams
[11]. The stoichiometric mixture fraction is 0.25,
and is achieved by moving nitrogen from the air
stream to the fuel stream. Both fuel and oxidizer
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Table 1: Temporal ethylene jet simulation parameters.

H (mm) 1.8 Lx/H 16 τjet (ms) 0.022
∆U (m/s) 82 Ly/H 11 τrun/τjet 50
Rejet 3700 Lz/H 6 # Cells 228×106

u′/∆U 4% ∆x (µm) 30 Sim. Cost (cpuh) 1.5×106

H/L11 3 δξ (mm) 0.8

Figure 1: Isocontours, corresponding to a spanwise slice, of
temperature (top) and Ysoot (bottom) at t = 50τj . The
peak Ysoot is off scale at 4.5 × 10−4, located at x = 0.72
cm in the center region.

streams are preheated to 550 K.
Figure 1 shows contour plots of the tempera-

ture and soot mass fraction fields at the end of the
simulation. The temperature field shows signifi-
cant turbulence-flame interaction. The soot mass
fraction has a low diffusivity, and shows thin struc-
tures as the soot is strained and convected by the
turbulent flow. Soot is formed on the rich side of
the flame, and convected by turbulent eddies into
the fuel-rich core. The other two soot moments
show a similar structure.

Scatter plots of temperature and mass fractions
of soot, and C2H2 are shown in Fig. 2. Also shown
in the figure are the conditional means and stan-
dard deviations of the quantities. The tempera-
ture, and C2H2 species show a relatively small de-
gree of scatter, and a tight state relationship with
the mixture fraction, as evidenced by the condi-

Figure 2: Scatter plots with conditional means and condi-
tional standard deviations at t = 50τj .

tional standard deviation having values an order of
magnitude lower than the conditional mean. The
conditional standard deviation of the soot mass
fraction, by contrast, is of the same magnitude
as the conditional mean. At the t = 50τj time
shown, the peak mixture fraction is just below 0.8.
The soot mass fraction peaks at ξ = 0.4, as does
the soot reaction source terms. However, soot is
present at nearly all mixture fractions greater than
this (up to the maximum), in the simulation. The
dispersion of soot towards higher mixture fractions
occurs through differential diffusion between soot
and gaseous species. Modeling this differential dif-
fusion is the primary challenge of CMC of sooting
flames.

3. CMC Formulation

The CMC equations considered in this paper
are derived from the joint species PDF following
Klimenko [1]. In the present simulation, the jet
time scales are small enough that relatively low
concentrations of soot are present, and there is no
significant mass transfer between the gas and soot
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phases. Hence, for the present purposes, the mix-
ture fraction is computed from the gaseous mix-
ture using Bilger’s definition [15]. We also ne-
glect the dependence of conditional quantities on
the nonhomogeneous cross-stream direction (as is
common in CMC modeling [4, 16]), so that all
spatial derivatives of conditional quantities are ne-
glected.

A brief description of the CMC model deriva-
tion is presented below. One begins by taking the
average of the transport equation for the multi-
dimensional fine-grain PDF by integrating over the
multi-dimensional sample space to obtain the joint
PDF transport equation. The transport equation
for the fine grain PDF is given by

∂ρψ

∂t
+∇ · (ρ~vψ) +

∂

∂Zi
(ψ∇ · (ρDi∇Yi)) = (1)

− ∂

∂Zi
(ρψwi)−

∂

∂Zi

(
ψ∇ · (ρ−1DT,iYi∇ lnT )

)
Here, ψ is the fine grain PDF, wi is a reaction

source term, ρ is density, v is velocity, T is tem-
perature, D is a diffusivity, Yi is a species ran-
dom variable (including mixture fraction and soot
mass-moments divided by density), and Zi is its
sample space variable. Index notation is used (but
Di refers directly to Yi with no implied summa-
tion). The last term is the thermophoretic term
and is assumed zero for all species except soot mo-
ments. The third term is the diffusion term, and
is rearranged significantly in the derivation.

The diffusive term is split into two terms: a
term with all diffusivities equal, and a correction
to this:

∂

∂Zi
(ψ∇ · (ρDi∇Yi)) =

∂

∂Zi
(ψ∇ · (ρD∇Yi)) +

(2)

∂

∂Zi
(ψ∇ · (ρ(Di −D)∇Yi))

The derivation then proceeds as in the constant
diffusivity case, and the correction term is brought
along directly, with no additional rearrangement.
The first term on the right hand side (RHS) is
replaced according to the identity

∂

∂Zi
(ψ∇ · (ρD∇Yi)) = (3)

∂

∂Zi

∂

∂Zj
(ψρD∇Yi · ∇Yj)−∇ · (ρD∇ψ)

The term on the far RHS of this equation is re-
placed with the identity

∇ · (ρD∇ψ) = ∇2(ρDψ)−∇ · (ψ∇(ρD)) (4)

The resulting equation is averaged over the sample
space to obtain the joint PDF transport equation:

∂〈ρ|Z〉P
∂t

+∇ · (〈ρ~v|Z〉P ) = − ∂

∂Zi
(〈ρwi|Z〉P )

(5)

− ∂

∂Zi

(
〈∇ · (ρ−1DT,iYi∇ lnT )〉P

)
− ∂

∂Zi
(〈∇ · (ρ(Di −D)∇Yi)|Z〉P )

− ∂

∂Zi

∂

∂Zj
(〈ρD∇Yi · ∇Yj |Z〉P )

+∇2(〈ρD|Z〉P )−∇ · (〈∇(ρD)|Z〉P )

The terms on the RHS are a reaction term, a ther-
mophoretic diffusion term, a DD correction term,
a diffusion term and two terms arising from the
diffusion term (which are normally neglected at
high Reynolds number [1]).

The joint PDF equation is multiplied by one of
the Zi (say Zk) and integrated over all Zi except
for η, where η is the sample space variable for mix-
ture fraction, ξ. This results in the transport equa-
tion for conditionally averaged scalars, the CMC
equation. Here, the identity of the diffusivity D
must be determined, and different results are ob-
tained with different choices. Setting D equal to
the thermal diffusivity is a popular choice. Hewson
et al. [6] set D equal to the species under consider-
ation (that is D = Di corresponding to Zk). The
resulting equation for soot mass fraction is

∂〈ρYs|η〉Pη
∂t

+∇ · (〈ρYs~v|η〉Pη) = 〈ρwY s|η〉Pη
(6)

+ 〈∇ · (ρYsDT,i∇ lnT )|η〉Pη

− ∂

∂η
(〈∇ · [ρ(Dξ −Ds)∇ξ]Ys|η〉Pη)

− ∂2

∂η2
(
〈ρDs(∇ξ)2Ys|η〉Pη

)
+

∂

∂η
(〈2ρDs(∇Ys∇ξ)|η〉Pη)

+∇2(〈ρDsYs|η〉Pη)−∇ · (〈∇(ρDsYs)|η〉Pη)

This equation is a conservative form of the condi-
tional transport equation for soot and is amenable
to finite-volume discretization solution procedures
[18]. The product 〈ρ|η〉Pη is a density in the ~x–
η space and conversion between conservative and
nonconservative forms is made using the mixture
fraction PDF transport equation. Equation (6)
can be rewritten in terms of other chemical species
mass fractions instead of soot, by a simple change
of notation, and by ignoring the thermophoretic
term. When soot is considered, its diffusivity is so
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small that terms multiplying Ds can be neglected.
In that case, the differential diffusion term has the
form

∂

∂η
(〈∇ · [ρDξ∇ξ]Ys|η〉Pη) = − ∂

∂η
(〈Ysρ|∇ξ|vξ|η〉Pη)

(7)
Here, the quantity |∇ξ|vξ is a diffusion velocity in
the mixture fraction coordinate and appears be-
low in Eqs. (8, 11). The differential diffusion term
is physically the divergence of soot mass flux in
the mixture fraction coordinate. The quantity vξ
is the velocity of isocontours of mixture fraction
normal to themselves, relative to the fluid veloc-

ity, and is defined as vξ = −∇·(ρDξ∇ξ)
ρ|∇ξ| . Here it

is observed that the differential diffusion of soot
is associated with this mixture fraction diffusion
velocity, which has recently been studied in DNS
of soot formation [11, 17].

Most of the terms in Eq. (6) are unclosed.
In this paper, we compare the magnitudes of the
terms on the RHS of Eq. (6), along with closure
models for three of these terms. Following the pri-
mary closure hypothesis of Klimenko and Bilger
[1], closures of the differential diffusion (DD) term,
the dissipation-scalar (DS) term, and the cross-
dissipation (CD) term, (which are terms 3, 4, and
5, respectively, on the RHS of Eq. (6)), are ob-
tained [6]:

DD :− ∂

∂η
(〈∇ · [ρ(Dξ −Ds)∇ξ]Ys|η〉Pη) (8)

≈ − ∂

∂η

[(
1− 1

Les,η

)
ρηMηQsPη

]
DS :− ∂2

∂η2
(
〈ρDs(∇ξ)2Ys|η〉Pη

)
(9)

≈ − ∂2

∂η2

(
ρηχηQs
2Les,η

Pη

)
CD :

∂

∂η
(〈2ρDs(∇Ys∇ξ)|η〉Pη) (10)

≈ ∂

∂η

(
ρηχη
Les,η

∂Qs
∂η

Pη

)
In these equations, a subscript η is short for <
·|η >, Qs denotes the conditional mass fraction of
soot, (or other species), and Mη is defined as

Mη =
1

ρη
〈∇ · ρDξ∇ξ|η〉 (11)

Klimenko and Bilger [1] provide the following ex-
pression relating Mη to χη:

Mη =
1

2ρηPη

∂(ρηPηχη)

∂η
(12)

0 0.2 0.4 0.6
ξ

-400

-200

0

200

400

M
η (

1/
s)

Mη, DNS
Mη, M1
Mη, M2

Figure 3: Comparison of Mη from Eq. (11), DNS, Eq. (12),

M1, and Mη = 1
2

∂χη

∂η
, M2 at t = 50τj .

Yunardi et al. [5] approximated this equation with

Mη = 1
2
∂χη

∂η by neglecting the η dependence of
ρηPη. Following the approach discussed below in
Section 4, Fig. 3 compares this approximation
with Mη from Eqs. (11, 12). Equation (12) is
in very close agreement with the unclosed expres-
sion from the DNS, whereas the approximation
Mη = 1

2
∂χη

∂η shows significant error; the relative

mean errors are 6.5%, and 77%, respectively.

4. Results

The CMC terms, unclosed in Eq. (6), and
closed in Eqs. (8-10) were evaluated from the
raw DNS data by conditionally averaging using
100 bins in the mixture fraction coordinate. The
conditional data are relatively smooth, but deriva-
tives, especially second derivatives are very noisy.
A filter that removes high wavenumber content
containing little energy was applied to the raw con-
ditional data for which derivatives in the mixture
fraction coordinate were taken.

4.1. Soot Mass Fraction Equation

Figure 4 shows a comparison of three key terms
on the RHS of Eq. (6) for the soot mass fraction
at times of t = 25τj and t = 50τj . The terms
shown are the reaction source term, the differen-
tial diffusion term, and the thermophoretic diffu-
sion term. Spatial derivatives of conditional mean
quantities are not considered, and the soot diffu-
sivity is equal to zero. The magnitude of the terms
at the later time is higher because the PDF of the
mixture fraction is higher in the reactive regions as
the combustion products expand and fuel and ox-
idizer mix. In addition, the peak 〈Ys〉 at t = 50τj
is approximately five times the value at t = 25τj .
At a given time, the reaction and differential diffu-
sion terms are of similar magnitudes, showing the
importance of both terms. The thermophoretic
term, however has a much smaller magnitude and
this term does not contribute significantly to the
conditional soot transport equation. These results
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Figure 4: CMC terms for conditional soot mass fraction
equation at two times.
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Figure 5: PDF of mixture fraction (bold lines), and condi-
tional mean scalar dissipation rate (thin lines) at two times.

are consistent with comparisons between the dif-
fusive velocity of the mixture fraction and ther-
mophoretic diffusion velocity [11, 17].

The dual peaks in the differential diffusion term
near the stoichiometric point arise from a small
peak in the mixture fraction PDF at this point.
Near this location, flow dilatation and tempera-
ture (hence kinematic viscosity) are high and the
local Reynolds number is low, reducing mixing
rates. This peak coincides with a depression in
the conditional mean scalar dissipation rate. The
mixture fraction PDF and conditional mean scalar
dissipation rate are shown in Fig. 5.

Figure 6 shows the differential diffusion term
for soot mass fraction, as well as the model ap-
proximation for this term, given in Eq. (8). The
DD term and its model are of similar magnitudes
overall. The agreement between the two terms is
good at very rich mixture fractions. However, at
intermediate mixture fractions, and near the flame
zone, large differences exist. Hewson et al. [6]
noted this discrepancy and proposed a model for
the residual DD term, representing the error be-
tween the exact term and its modeled approxima-
tion. The model is based on a turbulent diffusion
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Figure 6: Plots of differential diffusion term and its models
for the soot mass fraction CMC equation at t = 50τj .

process in mixture fraction space and is given by

RDDM ≈ ρηχηPη
2LeDD,t

∂2Qs
∂η2

, (13)

where LeDD,t is an effective turbulent Lewis num-
ber. The RDD term is also plotted in Fig. 6 (a),
as the dash-dot line. In Fig. 6 (b), the DD term
is plotted along with the sum of the modeled, and
modeled residual DD terms. Here LeDD,t was ar-
bitrarily set to a value of 3.0 to give reasonable
quantitative agreement between the curves. The
sensitivity of this model parameter to the flow and
combustion configuration (e.g., Reynolds number)
is unknown and requires further investigation. The
sum of the model and residual terms is observed to
reproduce the qualitative shape of the exact DD
term throughout the whole mixture fraction do-
main. The quantitative agreement is also remark-
ably good, consistent with previous results [6].

4.2. Gaseous Species

The CMC transport equation Eq. (6) is ap-
plicable to gaseous species as well as soot, with a
change of notation: Ds and Ys refer now to the
species mass fractions instead of soot mass frac-
tions. Whereas the soot diffusivity is practically
zero, the species diffusivities are significant, and
the fourth and fifth terms on the RHS of Eq. (6)
are present in the balance equation. The ther-
mophoretic term is neglected for gaseous species,
however.

The upper plots of Figs. 7, 8, and 9 show the
exact CMC terms of Eq. (6) for reactive scalars
CO2, OH, and H at t = 50τj . For each gaseous
species, the four terms shown are of similar mag-
nitudes in all regions of the mixture fraction coor-
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Figure 9: Plots of exact and modeled CMC terms for H.

dinate, hence all terms are important to the CMC
transport equation of the given species. The differ-
ential diffusion term is quite small for OH, but sig-
nificant for CO2 and H. The cross-dissipation and
dissipation-scalar terms tend to oppose and bal-
ance one another for each of the species throughout
most of the mixture fraction domain, as previously
observed [6].

A comparison of the exact and modeled CMC
terms is given in the middle and lower plots of
Figs. 7, 8, and 9 for species CO2, OH, and H,
respectively. For each species, the center plot con-
tains the dissipation-scalar and cross-dissipation
terms, along with their modeling closures. The
lower plots shows the differential diffusion term
and its model. The DS and CD models show the
right trend for each of the species, and reasonably
good quantitative agreement for species CO2 and
OH. The modeled CS and DS terms do not agree
as well for hydrogen, however.

The DD term and its model similarly show a
good qualitative trend over the mixture fraction
domain for each of the species, and the two curves
are reasonably close in magnitude. The discrep-
ancies between the modeled and exact terms are
due to the neglect of cross correlations between
the products of quantities making up the terms
since this assumption is made in deriving the mod-
eled terms. The model for the differential diffusion
term of gaseous species, DDM in Eq. (8) is re-
markably accurate, in contrast to the soot mass
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fraction, and the model for the residual of the dif-
ferential diffusion of the gaseous species is not re-
quired.

5. Summary and Conclusions

We have performed direct numerical simula-
tions of a three-dimensional, planar, turbulent ethy-
lene jet flame with soot formation. An a-priori
analysis of a recent formulation of the CMC model
for soot formation, specifically treating differen-
tial diffusion, has been performed. A common as-
sumption neglecting spatial dependence of condi-
tional quantities in the jet cross-stream direction
has been made. The remaining CMC terms and
proposed modeling closures for these terms have
been extracted from the DNS for soot mass frac-
tion and three gaseous combustion species. These
results show that for soot mass fraction, the ther-
mophoretic diffusion term is of secondary impor-
tance to the other CMC terms considered. The dif-
ferential diffusion term is directly responsible for
transport of soot in the mixture fraction coordi-
nate. As the location of soot in the mixture frac-
tion space dictates its temperature, and hence its
reactivity and radiative properties, accurate mod-
eling of this term is important. The modeling ap-
proximations for the soot differential diffusion are
shown to have the right qualitative trend, and to
be in reasonable quantitative agreement with the
exact differential diffusion term.

Differential diffusion is also observed to be sig-
nificant for gaseous species. CMC terms represent-
ing turbulent cross-dissipation between the species
mass fractions and the mixture fraction, a dissipation-
scalar term, the reaction source term and the dif-
ferential diffusion term are shown to be of similar
magnitude. The modeling of the cross-dissipation
and dissipation-scalar resulted in overshoot, while
the differential diffusion model terms are observed
to be reasonably accurate.
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