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ABSTRACT
This work presents a computationally inexpensive soot formation model for use in simulat-
ing large solid-complex fuel systems. The proposed model evaluates three variables: number
density of tars, bulk mass density of soot particles, and particle number density. Each of these
variables are influenced by soot formation phenomena, and this model evaluates the most
common of these phenomena: soot nucleation, surface reactions, and coagulation. Two sepa-
rate simulations were carried out using this model and results were compared against simula-
tions using a more detailed and computationally expensive model. Results are promising and
show a meaningful reduction in model complexity and computational cost while still giving
comparable results.
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1. Introduction

Predicting the formation of soot in combustion systems has been a research challenge for
decades [1]. While the phenomena of soot formation has been well-studied in gaseous fuel
systems and sophisticated models have been developed [2–9], the processes are less studied
in solid fuel systems and there are few models available for predicting soot yields [10, 11].

The first step in the formation of soot particles is the nucleation of an incipient particle from
soot precursors [12]. Differences in soot formation from gaseous and solid fuels is rooted in
the source of system precursors. For gaseous fuels, soot precursors are polycyclic aromatic
hydrocarbons (PAHs). These PAHs form from the gas-phase through a variety of chemical
mechanisms [5, 13]. The formation of PAHs in fuel-rich regions of a flame often acts as a
rate-limiting step to the soot formation process, putting constraints on both soot mass yield
and particle size.

For solid fuels, soot precursors are primarily tars released from the parent fuel during pri-
mary pyrolysis [14, 15]. Unlike PAHs, which are organic aromatics, tars from solid fuels
contain mixtures of aromatics/aliphatics and organics/heteroatoms. These differences in the
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precursors may perpetuate in the reactivity of soot particles themselves [16, 17]. More impor-
tantly, pyrolysis of the parent fuel tends to release a much larger concentration of tars than
any concentration of PAH build-up that we see in gaseous-fuel systems, indicating a much
higher potential for soot formation in solid-fuel systems [14, 18].

Unfortunately, tars released from pyrolysis represent hundreds of possible species [18] all
reacting in different ways. This pseudo-species, tar, is difficult to model. When we add to this
some of the inherent complexities of modeling soot (complex chemical kinetics, changing
particle morphology, and representing particle-size distributions), developing and computing
a detailed, physics-based soot mechanism for solid fuels quickly becomes both difficult and
computationally expensive.

Previously, a model was developed which captured many of these complexities [19]. Un-
fortunately, the previous model was computationally too expensive for use in large-scale sim-
ulations. This work purposes a reduced model for use in large-scale systems predicting the
formation of soot from solid fuels.

2. Model Development

The proposed model solves rates for three quantities: the number density of tar molecules
(Ntar), the number density of soot particles (Nsoot), and the bulk mass density of soot particles
(Msoot). Transport equations for these quantities may be written for use in various simulation
approaches, but the generation/consumption rates for each term are defined here by submodels
common to soot formation:

dNtar

dt
= rT I−2rSN− rT D− rTC +2508NtarrT S, (1)

dMsoot

dt
= 2mtarrSN +mtarrT D +πd2

sootNsootrSS. (2)

dNsoot

dt
= rSN− rSC, (3)

These equations include terms for tar inception (rT I), tar deposition (rT D), thermal cracking
(rTC), soot nucleation (rSN), soot coagulation (rSC), and surface reactions (rT S and rSS). These
terms are described in the following sections. The primary reduction of the soot formation
model presented in this paper deals with the representation of tar and soot as mono-dispersed
particle size distributions with the molecular weight of tars computed at inception then held
constant and the particle weight of soot particles modeled along with number densities for
both tar molecules and soot particles. As the molecular weight of tar is fixed, the transport of
the tar number density accounts for the tar mass balance.

The reduction of complex models to simple particle number and bulk mass densities to
represent a soot distribution is not original to this work [10, 20–22], and equations for many
of these terms (soot nucleation, soot coagulation, and soot surface reactions) may be found
in various forms throughout the literature. However, the coupling of these equations to a tar
source term and the simplification of that species in the following sections represents the bulk
of the novelty in this work.
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2.1. Tar Inception

In a solid-fuel system, the formation of precursors is a summation of two sources: PAH build-
up from light gases and the release of tar volatiles during primary pyrolysis. The proposed
model dismisses the PAH build-up from light gases as a negligible source of precursors [14];
however, should researchers determine that a particular system for which this model is applied
contains a significant build-up of PAH, inclusion of a PAH mechanism should be straightfor-
ward.

Precursor inception from the release of tar volatiles is modeled using a ‘sooting potential’
model unique to fuel type and pyrolysis conditions. This model is a calibrated surrogate model
that predicts the mass fraction of volatiles (resulting from primary pyrolysis) which are tar
(ytar) along with their average molecular size (mtar). Using the sooting potential model, either
for biomass or for coal, we may predict the rate of tar inception as a fraction of the rate
volatiles are released during primary pyrolysis rv (kg/m3s),

rT I =
ytar ṙv

mtar
, (4)

for which there are many developed models [23–26].

2.1.1. Biomass

To develop the sooting potential model, the coal percolation model for devolatilization
(CPD) [26] along with its biomass adaptation (CPDbio) [27] were used as standards for cal-
ibration. CPD is a network devolatilization model designed to predict products of primary
pyrolysis for solid fuels. CPD-CP, a specific CPD iteration [28], contains a submodel com-
bination for predicting particle temperature profiles if a user specifies the surrounding gas
temperatures, pressure, and particle velocities; this particle temperature profile, along with
CNMR (13C nuclear magnetic resonance) parameters of a fuel, are fed into the CPD portion
of the code to predict pyrolysis behavior. To calibrate the sooting potential model, CPD-CP
was executed thousands of times varying input parameters to create a comprehensive data set
to which parameters could be tuned. During the calibration of the sooting potential model, it
was quickly found that fuel particle velocities had a minimal effect on total tar yield and tar
size and so particle velocities were kept constant 2.5E-5 (m/s) for the data creation.

CPDbio-CP was used to calibrate the sooting potential model for biomass fuels. When
using CPDbio, predicting products of biomass primary pyrolysis is accomplished by first pre-
dicting the devolatilization behavior of five biomass components: cellulose, galacto-gluco-
mannose (softwood hemicellulose), xylose (hardwood hemicellulose), softwood lignin (with
higher concentrations of guaiacyl constituents), and hardwood lignin (with higher concen-
trations of syringyl constituents). Each component is determined independently and summed
together, weighted by the respective mass percentage of each component in a given biomass,
to predict the overall devolatilization behavior of the given biomass species.

CPDbio was executed 1000 times for each biomass component over a wide range of pres-
sures and gas temperatures, 0.1<P (atm)<100 and 800<T (K)<3000, using a Latin hyper-
cube sampling method. This generated 1000 data points to which rational empirical models
of the forms

ytar =
a+bTg + cPl +dT 2

g + eP2
l + f TgPl +gT 3

g +hT 2
g Pl + iTgP2

l + jP3
l

k+ lTg +mPl +nT 2
g +oP2

l + pTgPl +qT 3
g + rT 2

g Pl + sTgP2
l + tP3

l
, (5)
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Figure 1.: Comparison between results given by CPDbio versus the proposed sooting po-
tential empirical model. Different colors represent different biomass components: cellu-
lose (blue), hemicellulose softwood/hardwood (green/yellow), and lignin softwood/hardwood
(magenta/red). The left plot shows the comparison for tar mass yield (R2=0.811) and the right
plot shows the comparison for tar mass size (R2=0.856).

mtar =
a+bTg + cPl +dT 2

g + eP2
l + f TgPl +gT 3

g +hT 2
g Pl + iTgP2

l + jP3
l

k+ lTg +mPl +nT 2
g +oP2

l + pTgPl +qT 3
g + rT 2

g Pl + sTgP2
l + tP3

l
, (6)

were fitted. ytar is the mass fraction of volatiles which is tar and mtar is the average molec-
ular mass of those tar species. In Equations 5 and 6, Tg represents the gas temperature (K)
and Pl represents the logarithm (base 10) of the pressure (atm). Calibration was accomplished
using a series of least-squares fittings for all 20 parameters. Insignificant parameters (those
with an influence less than 2% on final yields and sizes) were eliminated and the proposed
models refitted leaving the equations shown in Table 1. Like CPDbio, the sooting potential
model predicts behavior for five different biomass components. To find the total biomass de-
volatilization behavior, simply sum together those components weighted by the mass fraction
of the given component in the biomass

(7)ytar = ytar,cellycell +ytar,hw/hcyhw/hc +ytar,sw/hcysw/hc +ytar,hw/ligyhw/lig +ytar,sw/ligysw/lig,

mtar = mtar,cellycell +mtar,hw/hcyhw/hc +mtar,sw/hcysw/hc +mtar,hw/ligyhw/lig +mtar,sw/ligysw/lig.

(8)

Note that this sooting potential model neglects the behavior of extractives (the final and small-
est component of biomass) in part because extractives can vary so greatly that an individual
characterization would need to be done for every species, which is not possible in a general
model such as this. Fortunately, extractives typically make up a small mass fraction of most
biomass species (approximately 1-5%) [29].

Figure 1 shows the effectiveness of this empirical sooting potential model against CPDbio.
Both of these plots are parity plots where results of the sooting potential model are plotted
against the x-axis while results of CPDbio are plotted against the y-axis. The black 45° line
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Table 1.: Sooting potential model for biomass with calibrated parameters in Equations 5 and 6.
Tg and Pl are the gas temperature (K) and logarithm (base 10) of the pressure (atm), respec-
tively.

Component Model

Cellulose
ytar,cell =

-1.57E5+290.6Tg−0.022T 2
g +8.00TgPl+3.60E-5T 3

g −0.036T 2
g Pl

−2.03E5+382.9Tg+11.2TgPl+4.53E-5T 3
g −0.042T 2

g Pl

mtar,cell =
-3.06E4+242.2Tg+1.05E4Pl−1.84E3P2

l −83.1TgPl+461.8P3
l

0.635Tg−0.145TgPl−0.021TgP2
l −2.78P3

l

Hardwood
Hemicellulose

ytar,hw/hc =
-5.21E5+3.12E3Tg−0.382T 2

g −1.08E3TgPl+0.207T 2
g Pl

5.75E3Tg−2.65E3TgPl−1.45E-4T 3
g +0.518T 2

g Pl

mtar,hw/hc =
236.7TgP2

l −5.92E4P3
l

0.608TgP2
l −109.4P3

l

Softwood
Hemicellulose

ytar,sw/hc =
7.05E4+144.4Tg−1.29E-5Pl+0.233T 2

g −7.41E-5T 3
g

3.69E5+91.0Tg−3.22E5Pl+0.725T 2
g −2.08E-4T 3

g

mtar,sw/hc =
−6.41E4P2

l +50.0TgPl+26.0TgP2
l +1.56E4P3

l
-1.65E3P2

l +0.126TgPl+0.072TgP2
l +41.3P3

l

Hardwood
Lignin

ytar,hw/lig =
9.04E4−76.2Tg−3.43E4Pl+6.03E-3T 2

g +36.6TgPl+7.69E-6T 3
g −0.011T 2

g Pl
1.37E5−117.5Tg−3.66E4Pl+0.012T 2

g +39.3TgPl+1.00E-5T 3
g −0.012T 2

g Pl

mtar,hw/lig =
4.78E6−8.40E3Tg+7.36T 2

g +3.39E6P2
l −573.1TgPl−1.23E-3T 3

g +340.1TgP2
l −4.85E5P3

l
8.13Tg+1.47E4P2

l −2.64TgP2
l +997.9P3

l

Softwood
Lignin

ytar,sw/lig =
470.5−0.303Tg−165.4Pl+3.22E-5T 2

g +0.124TgPl+6.46E-9T 3
g −2.37E-5T 2

g Pl
735.3−0.550Tg−176.0Pl+1.05E-4T 2

g +0.133TgPl−2.56E-5T 2
g Pl

mtar,sw/lig =
115.8Pl−29.7P2

l +0.117TgPl−3.86E-5T 2
g Pl+3.46E-3TgP2

l −2.16P3
l

0.887Pl+0.118P2
l −2.19E-4TgPl−4.00E-5TgP2

l −0.012P2
l
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represents a perfect match between the two models. As can be seen in the figures, the sooting
potential model follows the trends of CPDbio with good agreement (R2=0.811 and 0.856 for
soot mass yield and molecular size respectively) but there is room for improvement should a
better model form be found that is as computationally inexpensive as this proposed one.

2.1.2. Coal

To create a sooting potential model for coal fuels we needed to explore additional variables
reflecting 13C NMR parameters. These parameters may be obtained through a correlation
developed by Genetti et al. [28] which links these parameters to the elemental composition
and volatile matter content of the parent coal. Through this correlation and the use of CPD-
CP, we again developed a database of 1000 data points varying O/C atomic ratio (0.01<
OC <0.35), H/C atomic ratio (0.3< HC <1.1), volatile matter content (2<Vol (%)<80), pres-
sure (0.1<P (atm)<100), and gas temperature (800<T (K)<3000). This database was used in
a similar way to calibrate surrogate models of a form similar to Equations 5 and 6; as before,
negligible parameters were eliminated leaving

(9)ytar =

-124.2 + 35.7Pl + 93.5OC − 223.9O2
C + 284.8HC − 107.3H2

C

+ 5.48V + 0.014V 2 − 58.2PlHC − 0.521PlV − 5.32HCV

-303.8 + 52.4Pl + 1.55E3OC − 2.46E3O2
C + 656.9HC − 266.3H2

C + 15.9V

+ 0.025V 2 − 90.0PlHC − 462.5OCHC + 4.80OCV − 17.8HCV

and

(10)mtar =

3.12E5 + 16.4Tg + 4.34E5OC − 8.48E5HC + 6.38E5H2
C

− 361.3V − 0.221TgV − 6.39E5OCHC + 1.91E3HCV

753.6 + 0.042Tg + 83.9OC − 1.77E3HC + 1.20E3H2
C + 5.09E-3TgPl

− 0.024TgHC − 5.27E-4TgV + 0.513PlV − 361.0OCHC + 3.83HCV

.

In these equations Pl is the logarithm of the pressure (atm). OC and HC are the atomic ratios of
oxygen-carbon and hydrogen-carbon, respectively. V is the mass percent of volatile matter in
the parent coal. Tg is the gas temperature. Unlike biomass, these surrogate models are absolute
for predicting the tar mass yield and average molecular weight as a result of pyrolysis and do
not need to be recombined from components.

Figure 2 shows the effectiveness of this empirical sooting potential model against CPD.
Generally the sooting potential model follows the trends of CPD with good agreement
(R2=0.794 and 0.854 for soot mass yield and molecular size, respectively). It is interesting to
note that in calibrating these surrogate models all gas temperature terms dropped out of Equa-
tion 9 as negligible and pressure only has a minor role in determining tar size (Equation 10).
These characteristics show potential for further investigation in creating a more physics-based
sooting potential model.

The largest advantage of using the developed sooting potential model is being able to retain
the accuracy of the CPD model with computational cost-efficiency. To give a rough idea of the
economy of these surrogates, running a Fortran implementation of CPD on a single processor
took 2392 seconds to obtain the x-axis of the data shown in Figure 1. In contrast, running a
Python implementation of these surrogate models combined with a fitted first-order weighted
yield model (FOWY) for devolatilization, the y-axis data of the same figure, was obtained in
0.3 seconds. While this comparison is not perfect, it should convey that the surrogate models
are more computationally efficient for large-scale simulations.
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Figure 2.: Comparison between results given by CPD versus the proposed sooting potential
empirical model. The left plot shows the comparison for tar mass yield (R2=0.794) and the
right plot shows the comparison for tar mass size (R2=0.854).

2.2. Thermal Cracking

Thermal cracking is the chemical break-up of larger molecules, such as tars, into lighter gases
and is heavily influenced both by the chemistry of the molecule and temperature [30, 31]. Tar
volatiles, the soot precursors of this model, are not completely made up of aromatic rings but
rather contain aliphatic and non-carbon components, reflective of the parent fuel [32]. These
heteroatoms and aliphatic groups make tars more receptive to thermal cracking [33].

Thermal cracking of the tar is represented using a model developed by Marias et al. [34].
In this model, tars are characterized as four basic types: phenol, toluene, naphthalene, and
benzene. While tars are not actually phenol, toluene, naphthalene, or benzene, these four
species are used as surrogates. In mathematical terms we may say 1 mole of tar is taken as 1
mole of a mixture of phenol, toluene, naphthalene, and benzene. Each of these types undergo
different reactions. These reactions either convert one type to another with the difference of
mass being released into the gas phase, or crack completely into lighter gases. The rates of
each of these reactions are given in Table 2.

The Marias model is translated into a number density change of tar by multiplying the rates
of reaction by the fraction of molecular weight cracked into light gas,

(11)rTC =

(
31.1
94

k1xphe + k2xphe +
50

128
k3xnapth [H2]

0.4 +
14
92

k4xtol [H2]
0.5 + k5xben

)
Ntar

i ,

where kn values are given in Table 2. Square brackets denote species concentration in kmole
m3 .

xphe, xnapth, xtol , and xben are the mole fractions of surrogate tars. The difficulty in using this
submodel lies in specifying the xphe, xnapth, xtol , and xben values. In this study a surrogate
model is created which may be used to determine the values of these parameters.

To form this surrogate model, a numerical study was conducted to observe the evolution of
tar molecules in various combustion scenarios. This numerical study was performed by evolv-
ing an initialized group of tars using the cracking scheme detailed in Table 2 and the soot nu-
cleation scheme detailed later in Section 2.3 until 95% of the tars are fully converted to light
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Table 2.: Reactions and reaction rates used in tar cracking scheme (rates in kmole
m3s , concentra-

tions in kmole
m3 , and activation energies in J

mole K ).

Reaction Rates

C6H6O−−→ CO + 0.4C10H8 + 0.15C6H6 R1 = k1[C6H6O]

+ 0.1CH4 + 0.75H2 k1 = 1.00E7exp
( -1.0E5

RT

)
C6H6O + 3H2O−−→ 2CO + CO2 + 3CH4 R2 = k2[C6H6O]

k2 = 1.00E8exp
( -1.0E5

RT

)
C10H8 + 4H2O−−→ C6H6 + 4CO + 5H2 R3 = k3[C10H8][H2]0.4

k3 = 1.58E12exp
( -3.24E5

RT

)
C7H8 + H2 −−→ C6H6 + CH4 R4 = k4[C7H8][H2]0.5

k4 = 1.04E12exp
( -2.47E5

RT

)
C6H6 + 5H2O−−→ 5CO + 6H2 + CH4 R5 = k5[C6H6]

k5 = 4.40E8exp
( -2.2E5

RT

)

gases or soot particles. The initial concentrations of the various tar types were determined by
fuel oxygen mass fraction and the aromatic/aliphatic carbon ratio. The time averaged mole
fractions of the tars were computed and used as data to calibrate the surrogate model. This
numerical study was executed over a wide range of inputs, temperature, oxygen mass frac-
tion, aromatic/aliphatic carbon ratio, H2 concentration, and total initial tar number density,
to generate data. This series of studies revealed that the two most important parameters for
determining type fractions were temperature and initial tar number density. The other three
parameters, oxygen mass fraction, aromatic/aliphatic carbon ratio, and H2 concentration, all
had negligible effects on the time-averaged tar type ratios.

Figure 3 shows the results of varying temperature (left) and initial number density (right)
over a wide range, 500<T (K)<3000 and 1E10<Ntar (#/m3)<1E25. Observe that at low
temperatures and high number densities the fractions all collapse to 1/3, corresponding to
the initialization of the numerical study. This collapse is because at these conditions thermal
cracking, which is temperature dominated, becomes negligible in comparison to soot nucle-
ation mechanisms, which are concentration dependent. On the other hand, at high tempera-
tures the thermal cracking dominates soot nucleation, and as a result phenol and toluene-type
tars disappear quickly, being converted to a benzene-type. It is evident with the varying tem-
perature plot that in terms of reactivity, phenol > toluene > naphthalene/benzene, which is
expected because of the presence of oxygen in phenol, and aromatics are molecularly more
stable than aliphatics.

Using the results of Figure 3, an empirical model was proposed of a form which captures
the ‘S’ shape of the response surface (tanh),

xi =
tanh

(
a+bT + cCl +dT 2 + eC2

l + f TCl
)

m
+g+hT + iCl + jT 2 + kC2

l + lTCl, (12)
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Figure 3.: Variations of time-averaged tar ratios from numerical study. On the left, temper-
ature is varied while initial number density is kept constant. On the right, initial number
density is varied while temperature is kept constant. In both, initial oxygen mass fraction,
aromatic/aliphatic carbon ratio, and H2 concentration are all kept constant.

where T is the temperature and Cl is the logarithm (base 10) of Ntar. Using the same methods
discussed in Section 2.1, this model was calibrated yielding models for each xi parameter,

xphe =
1
6

tanh(5.73−0.00384 T −0.159 Cl)−0.218+0.0277 Cl, (13)

xnapth =
1
2

tanh
(
−1.98+6.18E-4 T +0.124 Cl−0.00285 C2

l +4.14E-7 T 2−4.97E-5 TCl
)

−0.576+0.000233 T −1.69E-7 T 2, (14)

xtol =
1
3

tanh
(
17.3−0.00869 T −1.08 Cl +0.0199 C2

l +0.000365 TCl
)

+0.000265 T −0.000111 C2
l −9.32E-6 TCl, (15)

xben = 1− xphe− xnapth− xtol, (16)

which can be used to predict these type fractions with ease during model implementation.
These empirical models produce decent results in comparison to the numerical study, as seen
in Figure 4, which presents a parody plot where results of the numerical study are plotted
against the x-axis while results of the surrogate model are plotted against the y-axis.

2.3. Soot Nucleation

Soot nucleation occurs through the coalescence of two tar molecules to form an incipient soot
particle

rSN = εβT N2
tar. (17)

Here βT represents a frequency of collision between tars and ε is a steric factor, the van der
Waals enhancement factor, with a value of 2.2 [35]. This steric factor, was assumed to be
constant in this work, consistent with past soot modeling work [6, 7, 36, 37]; however, more
recent work on collision frequency provides an improvement to this factor [38]. From kinetic
collision theory we can compute the frequency of collision between two molecules in the
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Figure 4.: Comparison between empirical model and numerical study for predicting tar-type
fractions (R2=0.913). The black straight 45°represents a perfect agreement between the two.

free-molecular regime

βT = d2
tar

√
8πkBT

mtar
, (18)

where kB is Boltzmann’s constant, and dtar, the effective diameter of the tar, can be computed
using a geometric relationship [36]

dtar = dA

√
2mtar

3mC
. (19)

Note that Equation 17 represents the number of incipient soot particles created through the
nucleation process. Two tar molecules are consumed for every one soot particle created; there-
fore, to obtain the total number of tar molecules consumed from soot nucleation multiply this
term by 2 as seen in Equation 1.

2.4. Deposition

When a tar molecule collides with a soot particle, there is a likely chance that the tar will
stick to the surface of the soot particle, thus growing the particle’s surface. This is deposition
process is modeled as,

rPD = εβT SNtarNsoot , (20)
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Table 3.: Surface growth mechanism where ki = AT n exp
(−E

RT

)
[5].

No. Reaction A ( m3

kmol·s·Kn ) n E ( J
mole )

1 C – H + H• −−→ C• + H2 4.2×1010 54,392

1R C – H + H• ←−− C• + H2 3.9×109 46,024

2 C – H + OH• −−→ C• + H2O 1.0×107 0.734 5,932

2R C – H + OH• ←−− C• + H2O 3.68×105 1.139 7,093

3 C• + H• −−→ C – H 2.0×1010

4 C• + C2H2 −−→ C – H + H• 8.0×104 1.56 15,762

using a frequency of collision, βT S, between tar and soot particles. We compute the frequency
of collision assuming a free-molecular collision regime

βT S = (dsoot +dtar)
2

√
πkBT
2µT S

. (21)

dtar is the effective diameter of tar, computed using Equation 19, and dsoot is the effective
diameter of the soot particles

dsoot =

(
6msoot

πρs

)1/3

, (22)

where msoot is the mass of an individual soot particle defined as msoot =
Msoot
Nsoot

. µT S is the
reduced mass of tar and soot

µT S =
mtarmsoot

mtar +msoot
. (23)

These equations represent the rate of tar depositing on the surface of soot particles. To
obtain the resulting mass accumulation, the second term in Equation 2, we simply multiple
the number rate of tar deposition by the mass of the tar molecules being deposited.

2.5. Surface Reactions

We consider two types of surface reactions: surface growth, through the hydrogen-abstraction-
carbon-addition mechanism (HACA), and consumption through oxidation and gasification.

HACA is an established growth mechanism [5, 39–41] which involves the attachment of
acetylene molecules to a radicalized particle surface. Reactions of the mechanism are detailed
in Table 3. Each reaction rate given in the table assumes a first order dependence on the
gaseous species. The overall reaction rate (kg/m2s) takes the form

RHACA = 2mCk4[C2H2]αχC• . (24)
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Table 4.: Parameters for surface consumption models found in Eqs. 30 and 31 [42].

Parameter units value Equation

AO2
kgK1/2

Pa m2s 1.92E-3 30

EO2
J

mol 1.16E5 30

AOH
kgK1/2

Pa m2s 2.93E-3 30

ACO2
kg

Pa1/2K2m2s
1.92E-3 31

ECO2
J

mol 5.55E3 31

AH2O
kgK1/2

Panm2s 1.92E-3 31

EH2O
J

mol 4.17E5 31

χC• represents a number density of sites on the particle surface which have been radicalized.
The α parameter is the fraction of those surface sites kinetically available for reaction. Early
implementations of HACA used an α value of 1 due to a lack of data. Appel et al. [5], derived
an empirical correlation for calculating α ,

α = tanh
(

a
log µ1

+b
)
, (25)

where µ1 =
Mi
Ni

, and a and b are given as

a = 12.65−0.00563T, (26)

b =−1.38+0.00068T. (27)

The χC• value is computed using steady-state assumptions of the HACA mechanism in Ta-
ble 3

χC• = 2χC−H
k1[H]+ k2[OH]

k−1[H2]+ k−2[H2O]+ k3[H]+ k4[C2H2]
. (28)

χC−H is the number density of sites on the particle surface available for reaction, estimated to
be 2.3×1019 sites/m2 [5].

Use of Equation 25 requires the number and mass densities of a species. For soot this is
not a problem as Nsoot and Msoot are computed directly. For tars, number density is evaluated
directly, Ntar, and mass density can be computed using the assumed molecular size,

Mtar = mtarNtar. (29)

Oxidation and gasification rates are modeled as presented by Josephson et al. [42], given
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as

Roxidation =
1

T 1/2

(
AO2PO2 exp

[
−EO2

RT

]
+AOHPOH

)
, (30)

Rgasi f ication = ACO2P0.5
CO2T 2 exp

[
−ECO2

RT

]
+AH2OP1.21

H2OT−1/2 exp
[
−EH2O

RT

]
, (31)

which are functions of temperature (T ), the ideal gas constant (R), and the partial pressures
of O2, OH, CO2, and H2O. Pre-exponential factors and activation energies given in Table 4.

The total effect of all four surface reactions, as a rate per unit of available surface area, is
the sum of the individual processes

rSS = rT S = RHACA−Roxidation−Rgasi f ication. (32)

For tar, surface area is computed through an empirical correlation developed by Tielens [43]
and results in the coefficient of the last term of Equation 1. This mass change of tar is then con-
verted to an equivalent number of molecules produced or consumed assuming all molecules
are a constant size. The surface area of soot is computed assuming spherical particles and the
resulting area given in the last term of Equation 2.

2.6. Coagulation

Particle-particle coagulation only affects the number density term of soot particles since total
soot mass is conserved throughout the process. The basic concept of coagulation is that two
spherical particles collide, stick, and mold to form one larger particle that is still roughly
spherical

rCS = βSN2
soot . (33)

Computing the frequency of collisions among soot particles is more difficult than among tars
or between tars and particles. This is because soot particles can grow to very large sizes, large
enough that soot particles can no longer be modeled with free-molecular collision regime
assumptions, but rather as particles grow in size they increasingly show characteristics of a
continuum collision regime. This model computes coagulation rates in both a free-molecular
and continuum regime and uses the Knudsen number

Kn =
2λp

dsoot
, (34)

a ratio of particle mean free path, λp, to particle diameter, to determine which regime we are
in and which solution to use.

In the free-molecular regime, the frequency of particle collisions is computed in a way
similar to those discussed before with the soot nucleation and tar deposition submodels,

β
f

S = εd2
soot

√
8πkBT
msoot

, (35)

where dsoot is computed from Equation 22.
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In the continuum regime, the frequency of particle collision was modeled by Seinfeld and
Pandis [44] as

β
c
S =

8kBT
3η

(1+1.257Kn) , (36)

where η is the gas viscosity.
In the free-molecular regime, Kn< 0.1, we use β

f
S in Equation 33 to model the coagulation

rate. In the continuum regime, Kn > 10, we use β c
S in Equation 33. In the transition regime,

0.1 < Kn < 10, we use a harmonic mean

β
t
S =

β c
S β

f
S

β c
S +β

f
S

(37)

in Equation 33.

3. Simulations

This reduced soot model is proposed as an alternative to a previously developed detailed
model [19] for systems that are too complex or computationally expensive for the detailed
model. In this section, we compare the detailed and reduced models using two simulation
configurations. The first is a flat flame burner configuration burning coal. The second is an
LES using biomass.

3.1. Coal Flat-flame Burner

The first simulation involved a laminar flat-flame burner to which coal particles were injected.
Details of this system were given by Ma et al. [46] and a schematic of the experimental set-up
is shown in Figure 5. In the experiment, different coal types were injected into an established
flame and a collection probe was set at different heights above the burner. In the collection
probe, cool nitrogen quenched reacting gases and soot, char, and gases were separated and
analyzed.

Experiments performed on the system were used previously to validate the developed de-
tailed model with promising results. A series of validation simulations were carried out with
details and results published previously [19]. One of these validation simulations was repeated
in this work, using a Pittsburgh #8 coal and a flame temperature of 1650 K.

Figure 6 shows the results of these simulations where the proposed reduced model is di-
rectly compared against the previously-developed detailed model with great agreement be-
tween the two models. The left plot compares the predicted particle number density at dif-
ferent heights above the burner for the two models. The right plot compares the predicted
soot volume fraction at those same heights. Here the reduced model initially tends to predict
a slightly higher number density, which then shrinks at a rate faster than the detailed model
eventually predicting a lower number density at long residence times. The initial higher parti-
cle number density is a result of the computed average of the reduced model. In contrast, the
detailed model evaluates the tar distribution over 22 sections, 19 of which have mass higher
than the computed average indicating that the vast number of particles are in those 3 sections
smaller than the computed average. Smaller tar molecules tend to be consumed by thermal
cracking faster than larger molecules. As a result, larger molecules, those in the higher sec-
tions, tend to make a higher percentage of soot particles in the detailed model, but in both
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Figure 5.: Diagram of flat flame burner used by Ma [45]. Reproduced with permission.
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Figure 6.: Soot particle number density and volume fraction simulation results from the coal
flat-flame burner, comparing reduced model against the detailed model.
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Figure 7.: Soot particle number density and volume fraction simulation results from the coal
flat-flame burner with artificial oxidation throughout the reactor, comparing reduced model
against the detailed model.

cases the total mass of tars going to soot is similar. Therefore, the total initial number of
particles predicted by the reduced model is more than the detailed model.

After the initial formation of soot particles, coagulation becomes the dominant mecha-
nism affecting particle number density. Rates of particle coagulation tend to be higher for
the reduced model than for the detailed model. This is due to the mono-dispersed nature of
the reduced model assumption. In the detailed model, small particles and large particles are
colliding together at different frequencies dependent on the size of the particles. Inherently,
there are a larger number of particles smaller than the average size than larger particles. This
means that the majority of particles have a smaller particle diameter, which, along with par-
ticle speed, has a strong impact on the collision frequency of particles. Therefore, a slight
decrease in collision frequency occurs in the detailed model compared to the reduced model
which assumes all particles are the same average size. A higher collision frequency on the
part of the reduced model leads to a higher rate of coagulation, as seen in the Figure.

In the experiment, coal particles are introduced into a fuel-rich flow and soot/char are
collected by a suction probe before encountering an oxygen-rich region. Thus little to no soot
oxidation occurs in the experimental set-up. In the model comparison here, an exploration of
all mechanisms, including oxidation, is desirable, thus the simulation was executed again but
with OH and O2 kept constant, at 2 and 500 Pa respectively, throughout the simulation to
compare the effects of oxidation on the soot profiles. Results of these oxidation simulations
are shown in Figure 7.

The left image of Figure 7 compares the particle number density of the oxidation sim-
ulations and results do not vary noticeably from Figure 6. The right image, on the other
hand, compares soot volume fraction predictions between the detailed and reduced models.
Here there are significant differences between the detailed and reduced models. Oxidation
reactions are more effective against particle distributions with higher surface area-to-volume
ratios (SA/Vs) because the oxidation reactions attack the surface of particles. By averag-
ing the mass and number densities for both tar and soot distributions in the reduced model,
we have effectively lowered the SA/V ratio of the distributions because, although the bulk
mass/volume of particles are larger, the bulk number of particles are smaller, and the average
which maintains both the mass and number density shifts the overall SA/V ratio towards the
smaller particles, thus oxidation becomes more effective.

This shift in SA/V is more severe in the tar distribution than in the soot distribution, and
most of the differences seen in Figure 8 are attributed to this shift in the tar distribution.
To demonstrate this, we performed another simulation where the OH and O2 concentrations
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Figure 8.: Soot particle number density and volume fraction simulation results from the coal
flat-flame burner with artificial oxidation imposed starting 30 mm into the reactor, comparing
reduced model against the detailed model.

Table 5.: Computational expense comparison between the detailed model and this reduced
model and found in the flat-flame burner simulation of Section 3.1.

Detailed Model Reduced Model
Final predicted particle number density (#/m3) 2.75E16 2.31E16
Final predicted soot volume fraction (PPBV ) 2.62 2.27
Simulation time (s) 3298 4

were not adjusted until after the tar had either been converted to soot or thermally cracked,
approximately 30 mm into the reactor, and results are shown in Figure 8. Here we see the
‘bend’ in results where the artificial oxidation takes effect at 30 mm. At this point there is an
insignificant concentration of tar and so the oxidation is only affecting the established soot
distribution. It is evident in this figure, that while predicted oxidation rate effects on the soot
distribution are still higher for the reduced model than for the detailed model, the deviation is
much smaller than it is for the tar distribution. This is consistent with the expected behavior
of tar formation regions not coinciding with oxidatizing regions, whereas formed soot does
encounter oxidizing zones.

The real advantage of this proposed reduced model lies in the reduced cost of execution.
Table 5 quantitatively compares the final results of each simulation along with executional
cost of each. As these simulations were relatively simple: one-dimensional and with chem-
istry and temperature profiles pre-established by experimentation, simulations could easily
be executed on a single processor with code written in the Python language. The table shows
that results of the two simulations gave very similar results, but the execution of the detailed
model had 800 times the computational cost. Given the large difference in computational cost,
and the difficulty and uncertainty in soot modeling, the agreement between the detailed and
reduced models is exceptional.

3.2. LES Simulation

The coal flat-flame burner provided a good comparison between the two models but the sys-
tem configuration is simple. To provide a more complex comparison of these two models
with a real CFD approach, LES was performed of an oxy-fuel combustor (OFC) located at
the University of Utah. These simulations were carried out to 7 seconds of simulation time
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Dimension of Test Rigs 
  Items Units Value_real Value_LES-1 Value_LES-2 
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(double channel) 
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ID_out m 0.0342 0.036 0.036 
OD_out m 0.0425 6.00E-01 6.00E-01 
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Figure 9.: Diagram of the downward burner and draft portion of the oxy-fuel combustor at the
University of Utah.

using the LES software package Arches.

3.2.1. Oxy-Fuel Combustor

The OFC is a downward-fired 50 kilowatt lab-scale combustor unit [47]. Figure 9 shows a
diagram of the combustion chamber and down-draft portion of the OFC; it does not show the
full heat-exchanger portion which would extend to the right of the diagram. The burner of
this unit contains a primary inlet and a secondary annulus inlet. Through the primary inlet
fuel particles are fed with a carrier gas, while through the secondary inlet an oxidizer is fed.
The oxidizer can be O2, an O2/CO2 mixture, or air, while the primary carrier gas is usually
CO2 or air. Walls of the reactor were heated to 1000 K.

The walls of the main combustion chamber are 0.6 m in diameter and 1.2 m long with
heated walls so as to minimize boundary layer effects. Quartz windows are inlaid in the walls
for visual observation and optical diagnostics in the main combustion chamber. Flue gases
pass from the combustion zone to the radiation zone through a slight narrowing of the com-
bustion chamber. All along the main combustion and radiation zones are a series of sample
ports through which measurement instruments are installed. A purge gas, typically of CO2
is blown over radiometers in these ports to protect the surfaces from the high heat flux and
ash build-up. After the radiation zone, flue gases are sent through a series of heat exchangers
before clean-up and ventilation.

18



Table 6.: Proximate and ultimate analysis for Douglas Fir biomass [29].

Moisture Volatiles Ash C H N S O

1.50 81.50 0.80 52.30 6.30 0.10 0.01 40.50

Table 7.: Flow rates for the two simulated experiments.

Primary Inlet
Fuel 5.22 (kg/hr)
CO2 4.29 (kg/hr)
O2 4.91 (kg/hr)
T 366.5 (K)
Secondary Inlet

O2 30.25(kg/hr)
T 529.4 (K)

Over-fire Air
O2 10.28(kg/hr)
T 529.4 (K)

Purge
CO2 3.83 (kg/hr)

T 294.2 (K)

3.2.2. Arches Simulation

Both the detailed soot model and the reduced soot model of this work were implemented
into Arches, which is built within the Uintah computational framework [48]. The reduced
soot model could be implemented directly as presented in this work. However, the detailed
model requires information about tar species, information discussed in Sections 2.1 and 2.2,
including tar molecular sizes, yields, and chemistry mole fractions. To obtain these values,
estimated reactor behavior (temperature, tar concentration, etc.) was fed into CPD and the
numerical schemes and results discussed in those sections were coded into the simulation
software rather than computed on-line.

Arches is a finite-volume LES-CFD software package under development at the University
of Utah and was originally developed to simulate large pool-fires, by solving filtered Navier-
Stokes equations at low Mach number using a pressure projection scheme and user-defined
boundary conditions. Since its original development, Arches has been expanded with exten-
sive particle physics to simulate solid-fuel flames. Now particulate fuels are traced in Arches
simulations using an Eulerian particle transport method and the size-distribution of particles
is represented using direct quadrature method of moments (DQMoM) with variable numbers
of weights and abcissas. Variables describing the particles include the raw coal mass, three
velocity components, char mass, particle weight, and enthalpy.

A variety of particle physics submodels are available in Arches. These include transport
models for drag forces, thermophoresis, and thermal radiation, as well as source models for
fuel swelling, devolatilization, char reactions, and ash-wall depositions. Chemistry profiles
are tabulated by mixture fraction and enthalpy before simulation with an assumed equilibrium
gas composition.

In these simulations, the fuel is a Douglas Fir biomass with Proximate and Ultimate anal-
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yses shown in Table 6 and inlet conditions shown in Table 7. Douglas Fir is considered to be
46% Cellulose, 32% Hemicellulose, and 22% Lignin [49]. Fuel density is 650 kg/m3 and the
raw fuel enthalpy is taken as -9.8477E5 J/kg. The fuel is represented by a particle distribution
evaluated using direct quadrature method of moments with 3 quadrature nodes at initial sizes
of 20, 120, and 240 µm particle diameters. Initially, the total weight of the fuel is divided up
as 42.1% small particles, 30.6% medium particles, and 27.3% large particles. Internal coor-
dinates of the fuel particle distribution include 3 coordinate velocities, temperature, number
density, particle diameter, raw fuel mass, char mass, and particle enthalpy.

Fuel pyrolysis is modeled using a first-order weighted yield model (FOWY)

dV
dt

= Adevol exp
(
−Edevol

RgasT

)
(V∞−V ) , (38)

where V is the volatile yield of the parent fuel. This model was calibrated against CPDbio
assuming a maximum temperature of 2300 K yielding values of 1.972E7 (1/s), 6.552E4
(J/mole), and 0.8596 for Adevol , Edevol , and V∞, respectively. These parameters have a very
small sensitivity to maximum temperatures above 1600 K as above that temperature biomass
particles completely devolatilize well before approaching that temperature. At lower temper-
atures the parameter sensitivity quickly increases.

Char oxidation is modeled using a global reaction rate

dMchar

dt
= AcharPn

O2
exp
(
−Echar

RgasT

)
, (39)

where Mchar is the consumption rate of carbon per m2 of available surface area for oxidation.
Values for Achar, Echar, and n were taken from work done by Murphy and Shaddix [50] and
were 4.128 (kg/m2 atmn), 45.5E6 (J/mol), and 0.18, respectively.

Thermal radiation was solved using discrete ordinates with 8 ordinates [51]. Absorption
coefficients were computed for the grey gases and soot aerosol cloud using a correlation de-
veloped by Sarofim and Hottel [52, 53]. This model only accounts for absorption/emission
properties of soot particles and grey gases based on experimental observations. It does not
account for particle scattering and work is ongoing to improve capabilities in this CFD soft-
ware.

Simulations were initiated with an empty reactor at atmospheric pressure and no initial
radiated heat loss. A coal volatile mixture fraction of 0.065 and oxygen mixture fraction of
0.161, with the remaining mass being CO2 are also initialized everywhere. No coal or soot
particles are initialized in the domain.

3.2.3. Results

Under the above conditions, two simulations were carried out to provide a more complete
comparison between the two proposed soot models. The first simulation used the detailed soot
model with the tar distribution evaluated over 5 sections and the soot distribution evaluated
over 6 moments. Proportions of the volatiles released as tar and partitioned into each evaluated
section were computed pre-simulation by CPD using estimated particle temperature profiles.
The second simulation used the reduced soot model with proportions of the volatiles released
as tar along with the size of tar predicted by the sooting potential model of Section 2.1.

Figure 10 shows representative instantaneous soot profiles resulting from each simulation.
Each image of the figure is a 2-dimensional cross-section of the combustion chamber 10
seconds into the simulation. Images (a) and (b) represent the soot volume fraction of each
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Soot Volume Fraction Soot Particle Number Density
Detailed Model Reduced Model Detailed Model Reduced Model
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Figure 10.: Instantaneous results of the comparative LES coal simulations at 10 seconds of
simulation time. From left to right the figures depict: (a) Soot volume fraction predicted by
the detailed soot model, (b) by the reduced soot model (max = 5.0 ppmv, min = 0 ppmv), (c)
soot particle number density on a log scale by the detailed model, (d) by the reduced model
(max = 1E21 #/m3, min = 1E16 #/m3).
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Table 8.: Computational expense comparison between the detailed model and the reduced
model for the OFC simulation of Section 3.2.

Detailed Model Reduced Model
Lines of code to implement model in Arches 1233 613
Simulation CPU hours 11,292 3,684
Time-averaged centerline soot volume fraction (ppmv) 1.98 1.87

simulation while images (c) and (d) represent the particle number densities.
To better compare results from these simulations, we took obtained time-averaged soot vol-

ume fractions by averaging simulation outputs from 6.5 seconds to 7.5 seconds with outputs
every 0.25 seconds. The first simulation, using the detailed model, predicts a time-averaged
soot volume fraction of 1.31 ppmv along the reactor centerline, and the second simulation,
using the reduced model predicts a soot volume fraction of 1.33 ppmv. While the reduced
model predicts a slightly larger fraction of soot along the centerline, the detailed model pre-
dicts slightly larger quantities of soot across the entire reactor (approximately 3% more bulk
soot volume fraction). As before, with the flat-flame burner, the number density of the de-
tailed model simulation is smaller closer to the burner but with similar soot volume fraction,
implying larger particles closer to the burner and therefore a smaller particle surface density,
thus constraining consumption reactions more. Like the flat-flame burner simulations, the dif-
ference between these two models was small in the LES simulation and the overall trends are
the same.

Another difference between the results of these two simulations comes from the rate of
particle mixing. The detailed model captured slightly more dispersion of soot particles than
the reduced model did, shown in the slightly lighter peripheries of the number density plots
of images (a) and (c) of Figure 10. This slight increase in dispersion may be a result of a
number of things, but most likely is an effect of diminished consumption rates in the detailed
model simulations discussed above. These diminished consumption rates allowed particles to
disperse more because a small amount of particles penetrated the flame’s reaction zone in the
detailed model, but not in the reduced model.

In implementation, the detailed model evaluates a shape factor to reflect the morphology
of particles. This shape factor is essentially a scale between 2/3 and 1 where 2/3 represents
a minimum of surface area to volume ratio (a sphere) and 1 represents a maximum of that
ratio. In the first simulation, the average shape factor of particles throughout the reactor was
0.69, and rarely exceeded 0.75. This indicates that a spherical representation of particles, an
assumption made for the reduced model, was fairly accurate for this system.

While the two models predict small differences in the soot particle distribution across the
reactor, the predictions are both comparable and promising to validate the proposed reduced
model. The true advantages of the reduced model are shown in Table 8. Both of these sim-
ulations were executed with the same LES software, same resolution, same partitioning, and
same operations. The only difference is the choice of soot model. This table shows that the
complexity of model implementation, reflected in part by the number of lines of code, is much
different. Implementing the reduced model is much simpler. At the same time, the computa-
tional cost, simulation CPU hours, is drastically reduced. While we recognize that the simu-
lation CPU hours reported includes as aspects of the simulation (fluid dynamic computations,
combustion reactions, radiative computations, etc.), the drastic reduction in the CPU hours
when using the reduced model shows both the impact this simpler model may have on a
large-scale simulation, and the large fraction of the overall simulation time required by the
detailed model.
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4. Conclusions

Computation of a fully detailed physics-based soot model comes at a high computational cost,
and when implemented in large simulations becomes unreasonable. This work proposes a
reduced model which significantly cuts computational costs by making two key assumptions:
first that all particles are spherical and second that distributions in a simulation cell are mono-
dispersed.

Along with the two stated assumptions, two surrogate models were also created. The first
of these surrogate models, the sooting potential model, predicts the fraction of fuel volatiles
which are tar and what the size of that tar is. Previously, soot modeling has depended on
alternative means to predict tar outputs from primary pyrolysis, either using a detailed model,
such as CPD, or using tabulated experimental data. The sooting potential here skirts these
needs and directly predicts tar outputs. The second surrogate model is one for tar chemistry.
The previously developed detailed model [19] required a numerical study to be performed for
every simulation to predict fractions of surrogate type molecules which could represent tar.
The new surrogate model bypasses the need for that numerical study and instead predicts type
fractions in-situ.

The combination of the above mentioned assumptions, along with the application of the
surrogate models, greatly reduces the mathematics and computational cost of soot formation
modelling while maintaining a promising level of accuracy in predictive simulations.

The reduced soot model was applied in simulations of two different configurations and
compared directly against identical simulations applying a more detailed model. The first
simulation was of coal in a one-dimensional flat flame burner. Both the detailed and reduced
models produced similar soot profiles with only small differences caused mostly by differ-
ences in particle coagulation rates. While profiles were very similar, the simulation time of
the reduced model was much shorter (800 times) than that of the detailed model. The second
simulation was of a biomass-fired oxy-fuel combustor. Predicted soot profiles were again very
similar, but the reduced model was both easier to implement and the total computational cost
was less, at approximately 1/3 the cost of the detailed model.

Given the significant economic advantage of the reduced model, we recommend its use
in large-scale solid-fuel combustion simulations where effects of soot formation cannot be
ignored but must be balanced with computational cost considerations.
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Nomenclature

Variable Meaning Units
Ai Pre-exponential constant for process i Varies
Cl Log of species concentration log

(
#

m3

)
di Collision diameter of species i m
Ei Activation energy for process i J

mole

kB Boltzmann constant (1.38064852e-23) m2kg
s2K

ki Kinetic rate constant m3

kmol s
Kn Knudsen number —–
HC Atomic ratio of hydrogen to carbon —–
mi Molecular mass of species i kg
Ni Particles/molecules of species i #

m3

OC Atomic ratio of oxygen to carbon —–
Pi Partial pressure of species i Pa
Pl Log of pressure (base 10) log(Pa)
ri Rate of change of process i #

m3s or kg
m3s

R Ideal gas constant J
mole·K

Ri Rate of process i kg
m2s

t Time s
T (g) Local temperature of gas K

V Volatile matter content —–
xi Mole fraction of species i —–
yi Mass fraction of species i —–

βi j Frequency of collision between species i and j or i with itself m3

s
ε Van der Waals enhancement factor —–
η Gas viscosity kg

m s
λp Particle mean free path m
ρs Soot density kg

m3

[i] Concentration of species i kmole
m3
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