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Modeling differential diffusion in non-premixed
combustion: soot transport in the mixture

fraction coordinate

By J. C. Hewson†, D. O. Lignell‡ AND A. R. Kerstein‡

An a priori analysis of a recent formulation of the conditional-moment-closure (CMC)
model is carried out using results of a 3-D direct numerical simulation (DNS) with re-
duced ethylene chemistry and a simplified soot model. Of particular interest is a term
that is new in the recent CMC formulation. This term is associated with the role that dif-
ferential diffusion plays in transporting soot relative to the mixture fraction coordinate.
In particular, it describes the role of small-scale diffusive processes on that transport,
and it has been modeled using an eddy-diffusivity approximation. The results suggest
that the eddy-diffusivity approximation works well over a wide range of conditions for
soot, but that the approximation, in the present form, breaks down for species for which
the flame chemistry is fast, such as those participating in the main-flame chemistry. This
breakdown is analyzed in a way that suggests a correction to the eddy-diffusivity model
for fast chemistry, but this correction has not been carried out at this point.

1. Introduction

The evolution of soot in non-premixed flames is of significant importance because of
its role in radiative heat transfer and the significant health consequences of emitted
soot as a pollutant. Among the many complexities of predicting turbulent reacting flows
in general, predictions of soot evolution present several particular challenges. One of
these challenges is related to the substantial difference in the diffusivity of soot particles
relative to the other reacting gases. This work focuses on this issue, generally referred
to as differential diffusion, and seeks to understand how differential diffusion affects the
local stoichiometry and temperature of the soot particles. This is significant because
the chemical evolution of soot particles is a strong function of the temperature and
stoichiometry. The temperature-stoichiometry relationship is also important because of
the role that soot plays in radiative heat transfer. In sooting flames, the primary source of
radiant heat flux is thermal emissions from soot while the primary in-fire sink for radiant
flux is also soot. Radiant heat flux is then a function of the joint soot-temperature
distribution.

In turbulent fires, knowledge of the joint soot-temperature probability density function
(pdf) is not readily obtained. One class of approaches that can be used to approximate
this quantity is the conserved-scalar modeling approach. This approach is based on the
idea that the thermochemical state can be referenced to a reduced set of variables for
which the pdf is easier to predict. In non-premixed combustion, this reduced variable
is the mixture fraction, the fraction of the local mixture that originated from the fuel
source. If the pdf of the mixture fraction can be obtained and if the temperature and soot
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can be obtained as a function of the mixture fraction, then the joint soot-temperature
pdf is obtained.

The growth of soot particles generally occurs at a rate that is slow relative to the
main flame chemistry and characteristics of the soot distribution typically evolve over
the scales of the entire turbulent flame. This necessitates a treatment that includes the
flame-scale evolution of the soot if one seeks to predict the behavior of soot. There are
two general frameworks for developing conserved-scalar modeling approaches that allow
the evolution of flame-scale quantities: conditional-moment closure (CMC) (Klimenko &
Bilger 1999) and unsteady-laminar flamelet models (ULFM) (Pitsch et al. 1998). In the
limit in which all of the transport coefficients are equal, both approaches are relatively
straightforward and have been employed successfully in many studies. When species
diffusivities differ, additional complications arise in the formulation. A model for flamelets
with full differential diffusion has been derived by Pitsch & Peters (1998), but in the
application to jet flames the best agreement with scalar fields was obtained by switching
from full differential diffusion to unity Lewis numbers at the end of the jet potential core
(Pitsch et al. 1998). For CMC, Kronenburg & Bilger (1997) developed a model to account
for the effects of differential diffusion based on the analysis of direct numerical simulations
(DNS). This model retains the different diffusivities of the species, but provides a term
that tends to move species profiles closer to that which would be obtained with equal
diffusivities as observed in their DNS; evaluation of this term requires the solution of
additional transport equations for each differentially diffusing scalar. For flames with soot
in which differential diffusion is important, results have been reported by both Pitsch
et al. (2000) and Kronenburg & Bilger (2000). Recently, Hewson et al. (2006) proposed
another model in the CMC context to describe the effects of differential diffusion on
soot evolution in one-dimensional turbulence (ODT) simulations (Ricks et al. 2008).
This model does not require the solution of an additional transport equation and further
explains the transition to unity Lewis numbers observed by Pitsch et al. (1998). This
model has also been evaluated using DNS results in Lignell et al. (2008a) where it was
confirmed that the model works well when applied in an a priori sense to soot evolution.

Here, we reexamine this recent differential-diffusion model of Hewson et al. (2006)
in an effort to understand the degree of universality that this model might exhibit. The
model will be examined using the same DNS results from Lignell et al. (2008a). The DNS
methods are described briefly in the following section. In Sec. 3 the recent derivation of
the CMC equations is provided in brief because it gives a somewhat different form of the
equations. The proposed model is also introduced there. Finally, in Sec. 4 the model is
evaluated in the context of the DNS results for both soot and other reacting scalars.

2. Direct numerical simulations

Results of a direct numerical simulation of a non-premixed planar ethylene jet flame
with soot formation and transport are used in the analysis of the conditional-moment
models under consideration. This simulation is presented in Lignell et al. (2008b, 2008a).
Here, a brief code description and summary of the simulation configuration are presented.

The simulation was performed using the S3D code developed at Sandia National Lab-
oratories. S3D solves the compressible, reacting Navier-Stokes equations using an ex-
plicit, fourth-order Runge-Kutta integration scheme and eighth-order central-difference
discretization operators with a tenth-order spatial filter. A Cartesian computational grid
is used with domain decomposition using MPI for parallelization. Composition and
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temperature-dependent thermodynamic and transport properties are evaluated using
Chemkin. A reduced, 19 species, 167 reaction ethylene mechanism was evolved using
the standard conservation equation

∂ρYi

∂t
+ ∇ · (ρYi~v) = −∇ · (ρDi∇Yi) + ρwi (2.1)

to represent the combustion system. Here ρ is the density, Yi is the species mass fraction,
~v is the bulk flow velocity, Di is the species diffusion coefficient and wi is the chemical
source term. Soot formation and transport is computed using the method of moments.
The first three mass moments of the particle size distribution are transported using the
following transport equations:

∂n

∂t
+ ∇ · (n~v) = −∇ · (n~vthm) + ρwn,

∂ρYs

∂t
+ ∇ · (ρYs~v) = −∇ · (ρYs~vthm) + ρwρY s, (2.2)

∂M2

∂t
+ ∇ · (M2~v) = −∇ · (M2~vthm) + ρwM2.

Here, ~vthm is the thermophoretic diffusion velocity, and n, ρYs and M2 are the soot mass
moments with source terms w. The effective Brownian diffusion coefficient of soot is
negligibly small. Soot particles are assumed spherical and an assumed shape lognormal
size distribution is used to close the moment source terms. The soot reaction model is
based on the model of Leung et al. (1991) and consists of nucleation, coagulation, growth
and oxidation steps.

The simulation configuration consists of a planar, temporally evolving ethylene jet
with periodic boundaries in the streamwise and spanwise directions, and non-reflecting
outflow boundaries in the cross-stream direction. Combustion occurs at 1 atm between
a central fuel core of ethylene and nitrogen surrounded by oxidizer. The streams flow in
opposite directions, are both preheated to 550 K, and consist of fuel and air with nitrogen
transferred from the air stream to the fuel stream to give a stoichiometric mixture fraction
of 0.25. A steady laminar flamelet solution was used to initialize the composition and
isotropic turbulence was overlaid in the jet core to trip the shear layers. The jet Reynolds
number is 3700, and the simulation is run for 50 characteristic jet times.

Figure 1 shows a planar slice through the spanwise direction of contours of OH mass
fraction (lines) along with filled and smoothed contours of soot mass fraction at 41 jet
times (τj). Soot initially forms on the fuel side of the flame surface at ξ = 0.4. The low
diffusivity of soot results in its being convected into the fuel core where it is strained
and mixed with fuel and combustion products. The OH mass fraction, along with tem-
perature, and other gaseous species are significantly more diffuse than the corresponding
soot mass fraction as evident in the figure. The high diffusivity of gaseous species rela-
tive to soot results in strong differential diffusion between soot and the gaseous mixture
fraction. Figure 2 shows profiles of mixture fraction, CO mass fraction and soot mass
fraction along a typical vertical (cross-stream) line of sight through the domain at 50τj.
The global CO structure is qualitatively similar to that of the mixture fraction. In con-
trast, the fine structure of the soot mass fraction shows significant variability across a
given monotonic region of the mixture-fraction profile.
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Figure 1. Contours of OH mass fraction (lines): five contours spaced from 0.0005 to 0.007,
and grayscale soot mass fraction with range 0 (white) to 0.00005 (black) at 41τj .
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Figure 2. Instantaneous profiles along a line of sight through the cross-stream direction at 50τj

with mixture fraction (dashed), CO mass fraction (left panel, lines and symbols) and soot mass
fraction (right panel, lines and symbols).

3. The conditional-moment equation and a closure hypothesis

There are two basic approaches to deriving the CMC equations. The method proposed
originally by Bilger (1993), decomposing the variables into conditional means and fluc-
tuations, was employed by Kronenburg & Bilger (1997) to analyze differential diffusion
and then to study soot evolution in jet flames (Kronenburg et al. 2000). In Hewson et

al. (2006) and Lignell et al. (2008a), the conditional-moment equations were derived in a
manner analogous to the method of Klimenko (1990) that is based on the joint-pdf evolu-
tion equation. There are two significant differences between the original CMC derivations
by Klimenko (1990) and the derivations in Hewson et al. (2006) and Lignell et al. (2008a).
In the latter cases, the equal diffusivity assumption was relaxed, resulting in some differ-
ent terms appearing in the conditional-moment equations. Also, the closure assumptions
employed by Klimenko were relaxed to allow for the effect of conditional fluctuations to
contribute to the transport of scalars in the mixture-fraction coordinate. In this section,
the alternate derivations are reviewed including the suggested closure models. Of partic-
ular interest is the model for a term involving the conditional fluctuations. The model
for this term will be discussed in Sec. 4.

The derivation starts with the joint-pdf equation that is obtained in a standard manner
using the conservation equations for the scalar of interest, either the species in Eq. (2.1)
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or the soot moments in Eq. (2.2) and the mixture fraction, ξ. Klimenko & Bilger (1999)
provide an exposition for the equal-diffusivity, variable-density and inhomogeneous-flow
case from which the mechanistic details can be obtained. Here, only the spatially ho-
mogeneous limit is considered and the terms that are small at high Reynolds numbers
are ignored (Klimenko & Bilger 1999). Also neglected here are the thermophoretic con-
tributions to soot transport that were also shown to be less significant (Lignell et al.,
2008a). For reference, the equations with these terms retained are available in Hewson
et al. (2006) and Lignell et al. (2008a). The conditional-moment equation for a scalar Yi

is obtained from the joint pdf by multiplying by Yi and integrating across all variables
of the joint pdf except for the mixture fraction

∂ 〈ρYi|η〉 fξ

∂t
= 〈ρwi| η〉 fξ (3.1)

−
∂2

∂η2

[〈

ρDi(∇ξ)2Yi

∣

∣ η
〉

fξ

]

+
∂

∂η
[〈2ρDi(∇Yi∇ξ)| η〉 fξ]

−
∂

∂η
(〈∇ · [ρ(Dξ − Di)∇ξ] Yi| η〉 fξ) ,

where the notation < ·|η > indicates conditional averaging with the sample-space vari-
able η and fξ is the marginal pdf for the mixture fraction. The terms on the right-hand
side (r.h.s.) represent the conditional averages of contributions from the chemical source
term, the product of the dissipation and Yi, the ξ-Yi cross-dissipation and the differen-
tial diffusion. This differs from the derivation in Klimenko & Bilger (1999) in that the
diffusivity of the scalar, Di, appears in most of the terms; also, the differential diffusion
contribution takes a somewhat different form.

Up to this point, Eq. (3.1) is an exact equation. As is typical in turbulence modeling,
a useful form of the equation requires some modeling assumptions. The conditional av-
erages of density, Yi, the scalar-dissipation rate and the diffusion velocity are defined for
convenience

ρη = 〈ρ|η〉 , Qi =
〈ρYi|η〉

ρη

, χη =

〈

2ρDξ(∇ξ)2|η
〉

ρη

, Mη =
〈∇ · (ρDξ∇ξ)|η〉

ρη

.

(3.2)
For the second and third terms of Eq. (3.1) on the r.h.s., Klimenko & Bilger (1999)
suggest the closures

〈

ρDi(∇ξ)2Yi

∣

∣ η
〉

≈
ρηχηQi

2Lei

, 〈2ρDi(∇Yi∇ξ)| η〉 ≈
ρηχη

Lei

∂Qi

∂η
. (3.3)

The first of these is exact if there is no correlation between the dissipation and the scalar
while the second is exact if the scalar gradient is perfectly correlated with the mixture-
fraction gradient by ∇ξ = ∇Yi∂Qi/∂η. Prior analysis of these closure approximations
shows that the separate approximations are often not very good, but the combined closure
(as proposed by Klimenko) is substantially better (Hewson et al. 2006). The current work
focuses on the analogous approximations for the fourth term,

〈∇ · [ρ(Dξ − Di)∇ξ]Yi|η〉 ≈

(

1 −
1

Lei

)

ρηMηQi. (3.4)

It was found in previous work that this approximation is particularly poor for soot
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(Hewson et al. 2006), and a residual fluctuation contribution was retained. The residual
fluctuation is expressed in terms of the conditional fluctuations for Yi and for the diffusion
velocity

y′

i =
ρYi − ρηQi

ρη

, M ′ =
∇ · (ρDξ∇ξ) − ρηMη

ρη

. (3.5)

With the decomposition suggested in Eq. (3.5), the fourth term on the r.h.s. of Eq. (3.1)
is

−
∂

∂η
(〈∇ · [ρ(Dξ − Di)∇ξ] Yi| η〉 fξ) = −

(

1 −
1

Lei

)

∂

∂η
(ρηMηQifξ) (3.6)

−

(

1 −
1

Lei

)

∂

∂η
(ρη 〈M

′y′

i| η〉 fξ) .

While the retention of conditional fluctuations in the mixture-fraction transport terms
of the CMC equations has generally been neglected for the first-order moments, Kim
(2002) indicated that the terms of this form need to be retained to balance the equation
for the derivation of the second-order CMC equations. Kim (2002) has also shown that
this type of contribution is a significant contributor to the flux in the second-order CMC
equations. The first term on the r.h.s. of Eq. (3.6) is more easily represented in terms of
the scalar-dissipation rate by using the mathematical identity

∂

∂η
(ρηMηfξ) =

∂2

∂η2

(

ρηχηfξ

2

)

− 〈∇ · (ρDξ∇fξ)| η〉 , (3.7)

and neglecting the last term, which is only important at low Reynolds numbers.

It is suggested (Hewson et al. 2006) that the last term in Eq. (3.6) be represented using
the gradient transport assumption. This reasoning arises because M ′ is dimensionally a
velocity fluctuation in the mixture-fraction coordinate, ρηfξ is a density in the mixture-
fraction coordinate and y′

i is a scalar fluctuation. Thus, this term looks like the turbulent
scalar transport term, but in the mixture-fraction coordinate. In analogy to the closure
of turbulent transport in physical space, we identify an “eddy diffusivity” in the mixture-
fraction coordinate. To do so, consider the history of a fluid element. This fluid element
is subject to mixture-fraction fluctuations on the diffusive (Bachelor) time scales of order
lB|∇ξ| where lB is the Bachelor scale for the mixture fraction. These fluctuations occur
over time scales of tB, the Bachelor time scale. A diffusivity formed from these quantities
is l2B|∇ξ|2/tB. Since the Bachelor scales are related by Dξ as Dξ ≈ l2B/tB an estimate,
good only to within an order of magnitude, of the diffusivity associated with mixture-
fraction fluctuations is the scalar-dissipation rate. This leads to the approximation of the
last term in Eq. (3.6) as

−
∂

∂η
(ρη 〈M

′y′

i| η〉 fξ) ≈
ρηχηfξ

2LeDD

∂2Qi

∂η2
(3.8)

where a constant, LeDD, has been added because the “eddy diffusivity” is only approxi-
mately represented by the scalar dissipation rate.

Applying the definitions in Eqs. (3.2) through (3.8) to Eq. (3.1) the CMC equation is
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written, after some manipulation, as

∂ (ρηQifξ)

∂t
= 〈ρwi| η〉 fξ (3.9)

+
ρηχηfξ

2Lei

∂2Qi

∂η2

−
∂2

∂η2

(

ρηχηfξ

2

)

Qi

−

(

1 −
1

Lei

)

∂

∂η

(

ρηχηfξ

2

)

∂Qi

∂η

+

(

1 −
1

Lei

)

ρηχηfξ

2LeDD

∂2Qi

∂η2
.

This equation is in conservative form with the pdf, fξ, appearing in all of the terms in the
role of the density in the mixture-fraction coordinate. In converting to non-conservative
form, the mixture-fraction pdf-evolution equation multiplied by Qi is subtracted from
Eq. (3.9), eliminating the third term on the r.h.s. The first and second terms on the
r.h.s. of Eq. (3.9) are the chemical source term and the typical transport in the mixture-
fraction coordinate term associated with unity-Lewis-number diffusion. The fourth term
describes the advection in the mixture-fraction coordinate associated with the evolution
of the mixture-fraction pdf. This contribution related to differential diffusion is attributed
to the long-time mean evolution of the mixture composition that would occur in laminar
flows as well as in turbulent flows. The fifth term is new in the recent formulations
(Hewson et al. 2006) and will be discussed extensively in the following section. This
contribution is related to the small-scale random fluctuations in the local composition
and is only valid in turbulent flows.

4. Results and discussion

In this section, previous results that lead to the current discussion are first reviewed.
The first application of the formulation in Eq. (3.9) was to the evolution of soot using the
ODT model (Hewson et al. 2006). For soot, Lei appearing in the second term on the r.h.s.
of Eq. (3.9) is large enough that the standard diffusive transport in the mixture-fraction
coordinate (second term on r.h.s of Eq. (3.9)) is negligible. The two contributions related
to differential diffusion were identified there to be substantial, however, and the model
proposed in Eq. (3.8) for the fluctuation term coming from the 〈M ′y′

i| η〉 contribution
was first suggested. There it was also shown that the constant LeDD appearing in this
model is of order unity.

The fact that LeDD is of order unity is interesting in the context of the larger under-
standing of differential diffusion. It has been observed that the turbulent mixing tends to
reduce the effect of differential diffusion (c.f. Pitsch et al. 1998 and Barlow et al. 2000),
in effect making the flow look more like the scalars have a unity Lewis number. The two
differential diffusion terms in Eq. (3.9) have different roles. The fourth term on the r.h.s.
tends to enhance the effects of differential diffusion and has the same character as the
differential diffusion terms that would appear in the laminar flow equations (i.e., Pitsch
& Peters 2008). The fifth term on the r.h.s. tends to dissipate any effects of differential
diffusion, and the fact that LeDD is of order unity suggests that this term captures the
basic physics of the tendency toward unity Lewis numbers for scalars in turbulent flows.
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Figure 3. Differential diffusion associated with fluctuations (solid) and its model (dashed)
from the left and right-hand sides of Eq. (3.8), respectively.

In Lignell et al. (2008a) the model was applied to the DNS described in Sec. 2. The
results associated with soot transport there were in agreement with those in Hewson et

al. (2006), and it was suggested that for soot LeDD = 3. A comparison between the left
and right-hand sides of Eq. (3.8) is shown in Fig. 3. This result also provides a reasonable
fit to the earlier ODT data (Hewson et al. 2006). Of particular interest is the diversity
of time and length scales in these two studies. In the ODT simulations, the Kolmogorov
time scale was on the order of 1 ms while the Kolmogorov time scale was on the order
of 50 µs for the DNS. The mean scalar-dissipation rates in the ODT simulations were
in the 0.1 - 1.0 s−1 range while those in the DNS were in the 10 - 100 s−1 range. This
suggests some degree of universality in the value of LeDD for soot.

However, when the model for the differential diffusion terms in Eq. (3.8) was applied to
other species that comprise the main flame chemistry in the DNS (Lignell et al. 2008a),
it was found to not be suitable, at least not for the same range of LeDD. In some cases
is was suggested that LeDD ≫ 1. In the present work, this observed behavior is dis-
cussed. To understand this behavior, it is helpful to follow the development of the eddy-
diffusivity approximation. The eddy-diffusivity approximation arises from the analysis
of a production-dissipation balance in the scalar fluctuation equation. As Peters (2000)
shows (c.f. Sec. 1.8 of that book) chemical reactions with sufficiently large Damköhler
numbers can alter the production-dissipation balance. Peters analyzed a model problem
presented originally by Corrsin (1961) and showed that the scalar-flux term was reduced
for a reaction that tended to reduce scalar fluctuations if the Damköhler number for that
reaction was not small. To follow the reasoning in Peters, an estimate for the covariance
of the reaction and scalar fluctuations is required. It is expected that reactions char-
acterized by fast chemistry fall into the category examined by Corrsin since Qi should
describe a quasi-steady state that reactions should pull perturbations toward. For these
cases, the approximation 〈w′

iy
′

i| η〉 ≈ −Bη

〈

(y′

i)
2
∣

∣ η
〉

is made. This approximation would
not be accurate in all cases, especially for soot growth where a positive correlation is
expected (more soot mass has greater surface area available for growth). However, since
the Damköhler numbers, Bη/χη, for soot reactions are small, the chemical-source contri-
bution to the scalar flux can be neglected. Following Peters (2000), an estimate for the
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scalar flux, here in the mixture-fraction coordinate, is

〈M ′y′

i| η〉 ≈
χηρ2

c

1 + Bη/χη

∂Qi

∂η
. (4.1)

Here the correlation coefficient between M ′ and y′, ρc, has been introduced. Comparing
this with Eq. (3.8) suggests that

1

LeDD

≈
ρ2

c

1 + Bη/χη

. (4.2)

There are two primary quantities that can affect the effective Lewis number for the
〈M ′y′

i| η〉 scalar flux. A lack of correlation between the fluctuations M ′ and y′

i and
fast chemistry (a large Damköhler number) both tend to increase LeDD. As discussed
by Corrsin (1961), the role of fast chemistry of the nature described by 〈w′

iy
′

i| η〉 ≈
−Bη

〈

(y′

i)
2
∣

∣ η
〉

is to reduce the magnitude of the scalar fluctuations. In Fig. 4, the quan-
tities 〈MYi| η〉 and MηQi are plotted, the difference between these being 〈M ′y′

i| η〉. In this
manner, it is possible to observe the conditions where the scalar flux associated with the
fluctuations is significant relative to that associated with the mean evolution, 〈MYi| η〉.
Also plotted in Fig. 4 are the conditional means and fluctuations of the scalars. Results
for three scalars are shown in Fig. 4: CO2, H and soot, all of which should be affected to
some degree by differential diffusion. It is seen that for CO2,

〈

M ′y′

CO2

∣

∣ η
〉

≪ 〈MYCO2
| η〉.

At the same time, y′

CO2
≪ QCO2

, and CO2 is known to be close to partial equilibrium

throughout the flame (i.e., the chemistry is fast). For the H atom
〈

M ′y′

CO2

∣

∣ η
〉

is small
in the main flame zone but significant in the diffusive layers around the main flame zone
following the behavior of y′

H
compared with QH. In these layers, H is known to follow a

reaction-diffusion balance and the reaction is not close to partial equilibrium (Hewson
& Williams, 1999). For soot with its small Damköhler number, the magnitude of both
〈

M ′y′

CO2

∣

∣ η
〉

and ys are substantial relative to the other terms, as has been noted (Hew-
son et al. 2006). While it would be desirable in the future to more directly evaluate the
role of the Damköhler number to better understand Eqs. (4.1) and (4.2), the appropri-
ate data is not available at this time. Overall, the trends suggest that the reduction in
scalar fluctuations associated with fast chemistry is responsible for LeDD being not of
order unity for scalars in the main flame chemistry. Equations (4.1) and (4.2) do show
that, given suitable information about the Damköhler number, it may be possible to
identify the magnitude of the eddy-diffusivity contribution to differential diffusion as the
Damköhler number increases, but this has not been pursued here.

The other parameter that appeared in Eq. (4.2) is the correlation coefficient. The
correlation coefficients between M ′ and y′

i are plotted in Fig. 5 for the three scalars
considered in Fig. 4. In Fig. 5 it is seen that the correlation coefficients in the regions of
significance are of similar magnitude, being of order one-half. This suggests that there
are no substantial differences in the applicability of Eq. (3.8) associated with a change
in the degree of correlation between the diffusive term and the scalar fluctuation.

5. Conclusions

A recent formulation of the CMC equations has been examined using an a priori

analysis with the results of a 3-D DNS using reduced ethylene chemistry and a simplified
soot model. Of interest in the recent CMC formulation is a term modeling the effect of
fine-scale differential diffusion, that associated with fluctuation of the diffusion velocity.
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Figure 4. Conditional mean (solid) and standard deviations (dashed) of species mass
fractions (right panels), and 〈MηYi|η〉 (solid), MηQi (dashed) (left panels).

This term is modeled currently using an eddy-diffusivity approximation, but where the
diffusivity is in the mixture-fraction coordinate and not the physical coordinate. For
soot, this approximation has been shown to work well under a variety of conditions.
For some species associated with the main-flame chemistry, this approximation is found
to be less suitable. Results presented here suggest that the role of fast chemistry in
reducing conditional scalar fluctuations are responsible for this change in behavior. That
is, the eddy-diffusivity approximation is less suitable for systems with large Damköhler
numbers, as has been noted elsewhere.
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