

$k\text{-}\epsilon$ properties, Other versions

- Standard k-ε
 - Poor at high Δp
 - Poor for swirling flows
 - ε equation is semiempirical
 - Fully developed flows
- RNG k-ε
 - Extra terms in $\boldsymbol{\epsilon}$ equation
 - Better for swirling flows
 - Better at lower Re
 - Swirl modifications

- Realizable k-ε
 - Newer (1995)
 - Exact ε equation
 - Better jet spreading rates
- k-ω model
 - $\begin{array}{ll} & \omega \text{ is the specific dissipation rate,} \\ & \text{with a transport equation} \\ & (\text{replaces } \epsilon) \end{array}$
 - Several versions

	17.2774	11.1.1.1.1.		to anniables and th	oir noor w	
We return to the length scale equation:	return to the length scale equation: Table 9.1: Alternative length-scale-surrogate variables and their near- behaviour.					
$l_{\varepsilon} = \frac{k_2^3}{\varepsilon}.$ (7.56)	φ	Dimensions	$\nu_t \propto \dots$	Wall-asymptotic behaviour	Wall va	
If we wish to derive a 'transport' equation for this length scale itself, we can do so as follows:	ε	$[L^2/T^3]$	$\frac{k^2}{\varepsilon}$	<i>O</i> (1)	$2\nu \frac{k}{y^2}$	
$\frac{Dl_{\varepsilon}}{Dt} = 1.5 \frac{k^{\frac{5}{2}} Dk}{\varepsilon} \frac{k^{\frac{5}{2}} Dc}{Dt} - \frac{k^{\frac{5}{2}} D\varepsilon}{\varepsilon^2 Dt}.$ (7.57)	$\omega \equiv \frac{\varepsilon}{k}$	$[T^{-1}]$	$\frac{k}{\omega}$	$O(y^{-2})$	∞	
Chis is so stated, but not actually executed, merely to highlight he fact that the length scale may, indeed, be thought of as being ransported, generated and destroyed by various interactions that	$\omega^2 \equiv \left(rac{arepsilon}{k} ight)^2$	$[T^{-2}]$	$\frac{k}{\sqrt{\omega^2}}$	$O(y^{-4})$	∞	
an be described exactly, via the terms in the turbulence-energy and dissipation-rate equations. Our preference for the dissipation rate is	$ au\equivrac{k}{arepsilon}$	[T]	$k\tau$	$O(y^2)$	0	
ue to the fact that it is this quantity that appears as the unknown ength-scale surrogate in the turbulence-energy equation. Equation (7.57) serves to introduce the general fact that any	$kL\equiv \frac{k^{5/2}}{\varepsilon}$	$[\mathrm{L}^3/\mathrm{T}^2]$	$(kL)/k^{1/2}$	$O(y^5)$	0	
puantity of the form: $\phi = k^m \varepsilon^n, \eqno(7.58)$	$L\equiv rac{k^{3/2}}{arepsilon}$	[L]	$k^{1/2}L$	$O(y^3)$	0	
an serve as a length-scale surrogate, and can be derived from: $D \phi$ $D h$ $D c$	$\nu_t \equiv C_\mu \frac{k^2}{\varepsilon}$	$[L^2/T]$	ν_t	$O(y^4)$	0	
$\frac{D\phi}{Dt} = \varepsilon^n m k^{(m-1)} \frac{D\kappa}{Dt} + k^m n \varepsilon^{(n-1)} \frac{D\varepsilon}{Dt}.$ (7.59)	or $R_t \equiv \frac{\nu_t}{\nu}$					
The most popular alternative to ε itself is $\phi = \varepsilon/k$, the 'specific dis- instance' wavely denoted by ω^{10} . The reason this alternative should	$c = \frac{\varepsilon}{\varepsilon}$	$[L/T^2]$	$k^{3/2}$	$O(y^{-1})$	∞	

$$\underbrace{-\frac{\partial}{\partial x_k} \left[\overline{(u'_i u'_j u'_k)} + \overline{\frac{P}{\rho}(\delta_{kj} u'_i + \delta_{ik} u'_j)} - \nu \frac{\partial}{\partial x_k} \overline{(u'_i u'_j)} \right]}_{\text{Diffusive Transport}} = \frac{\partial}{\partial x_k} \left(\frac{\nu_t}{\sigma_k} \frac{\partial \overline{(u'_i u'_j)}}{\partial x_k} \right)}{(6.2-15)}$$
Secondly, the pressure-strain term is approximated as[25]:

$$\overline{\frac{P}{\rho} \left[\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i} \right]} = -C_3 \frac{\epsilon}{k} \left[\overline{u'_i u'_j} - \frac{2}{3} \delta_{ij} k \right] - C_4 \left[P_{ij} - \frac{2}{3} \delta_{ij} P \right] (6.2-16)}$$
where C_3 and C_4 are empirical constants whose values are $C_3 = 1.8$ and $C_4 = 0.60, P = \frac{1}{2} P_{ii}$, and
 $P_{ij} = -\overline{u'_i u'_k} \frac{\partial u_i}{\partial x_k} - \overline{u'_j u'_k} \frac{\partial u_i}{\partial x_k}$ (6.2-17)
Finally, the dissipation term in Equation 6.2-14 is assumed to be isotropic and is approximated via the scalar dissipation rate[46]:
 $2\nu \overline{\frac{\partial u'_i}{\partial x_k} \frac{\partial u'_j}{\partial x_k} = \frac{2}{3} \delta_{ij}\epsilon}$ (6.2-18)

Modeling swirl in turbulent flow 20							
	TABLE 18. Le	gend description for case studies Case reference					
		Brum and Samuelsen ⁷⁸		Yoon ⁷¹		Roback an Johnson ¹⁶	
Turbulence model description/legend	Equations of reference	1	4		5	6	
Standard $k - \varepsilon$ model	34-42						
LPS gradient Richardson no.*	108-110	$C_{gs} = 0.10$ MTS	$C_{gs} = 0.005$ TTS		$C_{gs} = 0.03$ MTS	$C_{gs} = 0.005$ TTS	
"Boysan" Richardson no.	114, 115 109, 112	$C_{fs} = 0.90$ MTS $C_{qs} = 0.20$				C _{fs} =0.90 MTS	
Modified C_{μ} coefficient	134	$C_a = 0.03$ $C_b = 2.63$			$C_a = 0.03$ $C_a = 2.63$		
Gibson-Launder ASM*	76-99	$C_1 = 2.5$ $C_2 = 0.55$	$C_1 = 2.5$ $C_2 = 0.55$		$C_1 = 2.5$ $C_2 = 0.55$	$C_1 = 2.5$ $C_2 = 0.55$	
(II) —————— Gibson–Launder ASM	76-99	$C_1 = 2.0$ $C_2 = 0.40$ $\psi = 0.40$	$\psi = 0.40$				
(III) added convection		$C_1 = 2.5$ $C_2 = 0.55$	$C_1 = 2.5$ $C_2 = 0.55$				