Motivation

- Soot formation is a key process in flames and fires
 - Radiative heat transfer
 - Incomplete combustion
 - Environmental and health impacts
- Soot affects radiation, which affects temperature, which affects soot...
- Modeling soot formation is challenging
 - Complex chemistry among many species
 - · Representation of the particle size distribution
 - Potentially several PSD coordinates
 - Large range of scales
- Combustion simulations
 - complex chemistry, turbulent flow, multicomponent mass transfer, radiative heat transfer, soot formation
 - · Burden on users/developers for submodel expertise
 - Availability of libraries that offload submodels facilitates code development and progress

https://energy.sandia.gov/programs/nuclear-energy/nuclearenergy-safety-security/

• Chemkin, Cantera, etc.

Soot Processes: Nucleation

Semi-empirical

Leung et al.

- K. M. Leung, R. P. Lindstedt, W. P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames, Combustion and Flame 87 (1991) 289–305
- $C_2H_2 \rightarrow 2C_{soot} + H_2$

Lindstedt

- *R. P. Lindstedt, Simplified soot nucleation and surface growth steps for non-premixed flames, in: H. Bockhorn (Ed.), Soot Formation in Combustion, no. 59 in Springer Series in Chemical Physics, Springer-Verlag Berlin Heidelberg, 1994, pp. 417–441*
- $\bullet \quad C_2H_2 \rightarrow 2C_{soot} + H_2$
- ($C_6H_6 \rightarrow 6C_{soot} + 3H_2$)

Detailed

PAH Nucleation, Blanquart & Pitsch

- G. Blanquart, H. Pitsch, A joint volume-surface-hydrogen multi-variate model for soot formation, in: H. Bockhorn, A. D'Anna, A. F. Sarofim, H. Wang (Eds.), Combustion Generated Fine Carbonaceous Particles, KIT Scientific Publishing, 2009, pp. 437–463.
- 8 PAH species
- Free molecular PAH collisions to form PAH Dimers
 - $PAH_i + PAH_i \rightarrow Dimer$
 - Only self-collision assumed
 - Dimers not distinguished
- Dimer coagulation to form soot
 - Dimer + Dimer \rightarrow C_{soot}
 - Dimers assumed in steady state, quadratic eqn:

 $\sum_{i}^{n_{P}} \gamma_{i} \frac{1}{2} \beta_{P_{i},P_{i}} n_{P_{i}}^{2} = \underbrace{\beta_{D,D} \mathbf{n}_{D}}_{k}^{2} + \sum_{k}^{n} \beta_{D,C_{k}} n_{C_{k}} \mathbf{n}_{D}$ soot nuc. formation condensation

Soot Processes: Growth

Semi-empirical

Leung et al.

- $\bullet \ C_2H_2 \ \textbf{+} C_{n,soot} \rightarrow C_{n\textbf{+}2,soot} \ \textbf{+} \ H_2$
- $R_g \propto \sqrt{A}$

Lindstedt

- $\bullet \ C_2H_2 \ \textbf{+} C_{n,soot} \rightarrow C_{n\textbf{+}2,soot} \ \textbf{+} \ H_2$
- $R_g \propto A$

PAH Condensation

- Consistent with PAH nucleation
- D_{CxHy} + $C_{n,soot} \rightarrow C_{n+x,soot}$ + (y/2)H₂
 - Dimer size computed as weighted average over PAH contributions to PAH nucleation

$$R_{cnd,k} = \beta_{D,C_k} n_{C,k} n_D m_D \quad (=) \quad \text{kg/m}^3 \text{s}$$

Detailed

HACA

• ABF mechanism: Appel, Bockhorn, Frenklach, Combustion and Flame 121:122-136 (2000).

 $C-H + H \rightleftharpoons C^* + H_2$ $C-H + OH \rightleftharpoons C^* + H_2O$ $C^* + H \rightarrow C-H$ $C^* + C_2H_2 \rightarrow (3C)-H + H$ $C^* + O_2 \rightarrow 2CO$

- C* from QSSA over given reactions
- Reverse reactions from Ken Revzan and Frenklach 02/15/02 code soot.f: combustion.berkeley.edu/soot/codes/routines.html
- Rate is proportional to frac. available surf. sites α

$$\alpha = \tanh\left(\frac{a}{\log_{10}(M_1/M_0)} + b\right)$$

• a(T), b(T) from Balthasar and Frenklach, Combust. Flame 140:130-145 (2005)

Soot Processes: Oxidation

- O₂ Global: Leung, Lindstedt, Jones 1991
- C_{soot} + (1/2) $O_2 \rightarrow CO$
- O₂ Global: Lee, Thring, Beer 1962
- C_{soot} + (1/2) $O_2 \rightarrow CO$
- O₂ Elementary: Nagle, Strickland-Constable 1962
- C_{soot} + (1/2) $O_2 \rightarrow CO$
- Graphite rods

OH Elementary Neoh, Howard, Sarofim 1981

- C_{soot} + OH \rightarrow CO + H
- $R = 1290 \times 0.13 P_{OH} T^{-0.5}$
- R (=) kg/m²s, P_{OH} (=) atm, T (=) K

HACA O₂, OH: Appel, Bockhorn, Frenklach 2000

- C_{soot} + OH \rightarrow CO + H; from Neoh
- $C^* + (1/2)O_2 \to CO$
- Same rate as used in HACA for C* from QSSA

Optimized O₂, OH: Guo, Anderson, Sunderland 2016

- C_{soot} + (1/2) $O_2 \rightarrow CO$
- C_{soot} + OH \rightarrow CO + H
- Optimized among 12 experiments.
 - OH efficiency = 0.1

Optimized O₂, OH: Josephson et al. 2017

- C_{soot} + (1/2) $O_2 \rightarrow CO$
- C_{soot} + OH \rightarrow CO + H
- Optimized among 13 experiments using Bayesian statistics.
 - OH efficiency = 0.15

Soot Processes: Coagulation

- Assume spherical particles
- Two regimes
 - Free molecular: small particles
 - D << λ_{mfp}
 - Continuum: large particles
 - D >> λ_{mfp}
 - Note, λ_{mfp} is the mean free path of the particle, *not* the gas.

$$\dot{S}_{\text{coag}}(m) = \frac{1}{2} \int_0^m \beta_{\mu,m-\mu} n(\mu) n(m) d\mu$$
$$- \int_0^\infty \beta_{\mu,m} n(\mu) n(m) d\mu$$

$$\beta_{m,\mu}^{FM} = c\epsilon_c \left(\frac{\pi k_b T}{2}\right) \left(\frac{6}{\pi \rho_s}\right)^{2/3} \left(\frac{1}{m} + \frac{1}{\mu}\right)^{1/2} (m^{1/3} + \mu^{1/3})^2$$

$$\beta_{m,\mu}^C = \frac{2k_b T}{3\mu_v} \left(\frac{C_m}{m^{1/3}} + \frac{C_\mu}{\mu^{1/3}}\right) (m^{1/3} + \mu^{1/3})$$

Transition Region

- Harmonic mean $HM = \frac{C \cdot FM}{C + FM}$
- A more theoretically-based transition by Fuchs is also implemented

PSD: Sectional

- · Can't afford to consider all soot sizes
 - 50 nm particle ~ 6 million C's
- Divide the PSD into sections
- Assume uniform size within a section
- · Geometrically spaced

 $m_{min} \left(F^0, F^1, F^2, \dots, F^{N-1} \right)$

- Nucleation is into the first bin
- Growth and oxidation are transport in the size coordinate, written in n_i.

$$\frac{dn_{i,g}}{dt} = \frac{k_g A_{i-1} n_{i-1}}{m_i - m_{i-1}} - \frac{k_g A_i n_i}{m_{i+1} - m_i}$$

- Coagulation "lands" between bins
 - Assign to neighbors: conserve # and m

Example: premixed flame evolution

PSD: Method of Moments (MOM)

- Sectional models still require many bins
- Instead, solve for moments of the PSD

$$\frac{dn(m)}{dt} = \dot{S}(n(m))$$

$$\downarrow \qquad M_k = \int m^k n(m) dm$$

$$\frac{dM_k}{dt} = \int m^k \dot{S} dm = \dot{S}_k$$

- The moment source term involves integration over the unknown size distribution n(m).
- This requires a method for closure
- For soot growth, the closure of the fractional moments $M_{k-1/3}$ are needed.

Soot Growth Source

$$\begin{split} \dot{S}_{G} &= -\frac{\partial}{\partial m} (v_{g}n) \\ \dot{S}_{k,G} &= -\int_{0}^{\infty} m^{k} \frac{\partial}{\partial m} (v_{g}n) dm \\ \dot{S}_{k,G} &= k \int_{0}^{\infty} v_{g} m^{k-1} n dm \\ v_{g} &= k_{s} A \\ A &= \pi D^{2} \\ m &= \rho_{s} \frac{\pi}{6} D^{3} \\ v_{g} &= k_{s} \pi \left(\frac{6}{\pi \rho_{s}}\right)^{2/3} m^{2/3} \\ \dot{S}_{k,G} &= k_{s} \pi \left(\frac{6}{\pi \rho_{s}}\right)^{2/3} k \int_{0}^{\infty} m^{k-1/3} n dm \\ \dot{S}_{k,G} &= k_{s} \pi \left(\frac{6}{\pi \rho_{s}}\right)^{2/3} k M_{k-1/3} \end{split}$$

PSD: Method of Moments (MOM)

- Sectional models still require many bins
- Instead, solve for moments of the PSD

$$\frac{dn(m)}{dt} = \dot{S}(n(m))$$

$$\downarrow \qquad M_k = \int m^k n(m) dm$$

$$\frac{dM_k}{dt} = \int m^k \dot{S} dm = \dot{S}_k$$

- The moment source term involves integration over the uknown size distribution n(m).
- This requires a method for closure
- For soot growth, the closure of the fractional moments $M_{k-1/3}$ are needed.

Closure Approaches

Assumed shape n(m)

- Monodispersed
- Lognormal
- (Power-law + lognormal)
- Interpolative closure
 - Interpolate whole order moments to fractional moments
- Quadrature
 - QMOM
 - (DQMOM)
 - (CQMOM)

PSD: Assumed Shape n(m)

Monodispersed

- Simplest model
- 2 moments
 - M₀: number density, #/m³
 - M₁: soot mass density, kg/m³

• $M_1 = \rho Y_s$

• $f_v = M_1/\rho_s$

$$\bar{m}(m) = \delta(m - \bar{m})$$
$$\bar{m} = \frac{M_1}{M_0} = \frac{\rho Y_s}{n}$$

- Direct integration without closure
- Single (but variable) size
- Special case of QMOM

Lognormal

$$n(m) = \frac{M_0}{\sigma\sqrt{2\pi}} \frac{1}{m} \exp\left(-\frac{\log^2(m/\bar{m})}{2\sigma^2}\right)$$
$$M_k = \int m^k n(m) dm$$
$$M_k = M_0 \bar{m}^k \exp(k^2 \sigma^2/2)$$

Write for M1, M2, solve for $ar{m},~\sigma$

$$\sigma^{2} = \ln\left(\frac{M_{0}M_{2}}{M_{1}^{2}}\right)$$
$$\bar{m} = \frac{M_{1}^{2}}{M_{0}^{3/2}M_{2}^{1/2}}$$

$$M_k = M_0^{1-3k/2+k^2/2} M_1^{2k-k^2} M_2^{k^2/2-k/2}$$

General fractional moment k

PSD: Assumed Shape n(m)

Free molecular collision coefficient has factor

 $\left(\frac{1}{m_1} + \frac{1}{m_2}\right)^{1/2}$

- This factor precludes direct integration with closure using fraction moments
- Following Pratsinis (1988), assume

$$\left(\frac{1}{m_1} + \frac{1}{m_2}\right)^{1/2} \approx b\left(\frac{1}{m_1^{1/2}} + \frac{1}{m_2^{1/2}}\right)$$

- b is bounded between 0.707 and 1 when m₁ and m₂ approach the same size, and are widely separated, respectively.
- b=0.854 gives at worst a 15% error.
- FM coagulation:

$$S_{0,\text{coag}}^{fm} = -Kb \left(M_1 M_{1/6} + 2M_{2/6} M_{-1/6} + M_{4/6} M_{-3/6} \right)$$

$$S_{1,\text{coag}}^{fm} = 0$$

$$S_{0,\text{coag}}^{fm} = 2Kb \left(M_1 M_{7/6} + 2M_{8/6} M_{5/6} + M_{10/6} M_{3/6} \right)$$

$$K = c\epsilon_c \left(\frac{\pi k_b T}{2} \right)^{1/2} \left(\frac{6}{\pi} \rho_s \right)^{2/3}$$

Sotiris E Pratsinis. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. Journal of Colloid and Interface Science, 124(2):416–427, 1988.

Lognormal

$$n(m) = \frac{M_0}{\sigma\sqrt{2\pi}} \frac{1}{m} \exp\left(-\frac{\log^2(m/\bar{m})}{2\sigma^2}\right)$$
$$M_k = \int m^k n(m) dm$$
$$M_k = M_0 \bar{m}^k \exp(k^2 \sigma^2/2)$$

Write for M1, M2, solve for $ar{m},~\sigma$

$$\sigma^{2} = \ln\left(\frac{M_{0}M_{2}}{M_{1}^{2}}\right)$$
$$\bar{m} = \frac{M_{1}^{2}}{M_{0}^{3/2}M_{2}^{1/2}}$$

$$M_k = M_0^{1-3k/2+k^2/2} M_1^{2k-k^2} M_2^{k^2/2-k/2}$$

General fractional moment k

PSD: Quadrature

General quadrature with function f and weight function W

$$\int_{a}^{b} W(x)f(x)dx \approx \sum_{j=1}^{N} w_j f(x_j)$$

- w_j are weight factors and x_j are abscissas (environments)
- Take W(x) = n(m) for soot.

$$\int_0^\infty n(m)f(m)dm \approx \sum_{j=1}^N w_j f(m_j)$$

• This is equivalent to assuming

$$n(m) = \sum_{j=1}^{N} w_j \delta(m - m_j)$$

- If w_j and m_j are known, integration is trivial
- Compute w_j, m_j from moments M_k

2 environment Quadrature, 4 moments

$$M_{0} = \int m^{0}n(m)dm = \sum_{j=1}^{2} m_{j}^{0}w_{j} = w_{1} + w_{2}$$

$$M_{1} = \int m^{1}n(m)dm = \sum_{j=1}^{2} m_{j}^{1}w_{j} = m_{1}w_{1} + m_{2}w_{2}$$

$$M_{3} = \int m^{3}n(m)dm = \sum_{j=1}^{2} m_{j}^{2}w_{j} = m_{1}^{2}w_{1} + m_{2}^{2}w_{2}$$

$$M_{4} = \int m^{4}n(m)dm = \sum_{j=1}^{2} m_{j}^{2}w_{j} = m_{1}^{3}w_{1} + m_{2}^{3}w_{2}$$

Efficient and stable evaluation using the Wheeler Algorithm (*uses LAPACK*)

$$\dot{S}_{0,\text{coag}} = \frac{1}{2} \iint \beta(m,\mu) n(m) n(\mu) dm d\mu = -\frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \beta_{m_j,m_i} w_j w_i$$

PSD: MOMIC

- Frenklach's MOM with interpolative closure.
- · Interpolate fractional moments from whole-order moments
 - Interpolate among log(Mk)
 - · Positive moments: interpolate among all integer moments
 - Negative moments: interpolate among M₀, M₁, M₂
- Interpolation is done many times for a given set of integer moments.
 - Use a Newton forward polynomial; O(n) operations vs O(n²)
 - (But Barycentric Lagrange Interpolation is better)
- Interpolation among moments works for nucleation, growth, oxidation, and continuum coagulation.
- But special treatment is needed for the FM regime (including treatment of PAH condensation).

$$S_{0,c}^{FM} = -\frac{K_{FM}}{2} \iint n(m)n(\mu)(m+\mu)^{1/2} \left(m^{1/6}\mu^{-3/6} + 2m^{-1/6}\mu^{-1/6} + m^{-3/6}\mu^{1/6}\right) m^0\mu^0 dmd\mu,$$

$$S_{1,c}^{FM} = 0,$$

$$S_{k\geq 2,c}^{FM} = \frac{K_{FM}}{2} \sum_{j=1}^{k-1} {k \choose j} \iint n(m)n(\mu)(m+\mu)^{1/2} m^{1/6}\mu^{-3/6} + 2m^{-1/6}\mu^{-1/6} + m^{-3/6}\mu^{1/6}) m^k\mu^{r-k} dmd\mu.$$

Grid function $\int \frac{j(k-j)}{1/2}$
Interpolate whole powers to 1/2 power

Michael Frenklach. Method of moments with interpolative closure. Chemical Engineering Science, 57(12):2229–2239, 2002.

PSD: MOMIC

$$S_{0,c}^{FM} = -\frac{K_{FM}}{2} \iint n(m)n(\mu)(m+\mu)^{1/2} \left(m^{1/6}\mu^{-3/6} + 2m^{-1/6}\mu^{-1/6} + m^{-3/6}\mu^{1/6}\right) m^{0}\mu^{0}dmd\mu,$$

$$S_{1,c}^{FM} = 0,$$

$$S_{k\geq 2,c}^{FM} = \frac{K_{FM}}{2} \sum_{j=1}^{k-1} \binom{k}{j} \iint n(m)n(\mu)(m+\mu)^{1/2} m^{1/6}\mu^{-3/6} + 2m^{-1/6}\mu^{-1/6} + m^{-3/6}\mu^{1/6}) m^{k}\mu^{r-k}dmd\mu$$

$$\widehat{f_{1/2}}^{j,k-j}$$
Grid function
$$\widehat{f_{1/2}}^{j,k-j}$$

$$= M_{x-3/6}M_{y+1/6} + 2M_{x-1/6}M_{y-1/6} + M_{x+1/6}M_{y-3/6}$$

$$\stackrel{\text{$. Interpolation using 1, 2, 3, or 4 points }}{M_{x+3/6}M_{y+1/6} + 2M_{x+5/6}M_{y-1/6} + M_{x+7/6}M_{y-3/6}}$$

$$\stackrel{\text{$. Interpolation using 1, 2, 3, or 4 points }}{M_{x+3/6}M_{y+1/6} + 2M_{x+5/6}M_{y-1/6} + M_{x+7/6}M_{y-3/6}}$$

- $$\begin{split} f_2^{x,y} = & M_{x-3/6} M_{y+13/6} + 2 M_{x-1/6} M_{y+11/6} + M_{x+1/6} M_{y+9/6} + \\ & 2 M_{x+3/6} M_{y+7/6} + 4 M_{x+5/6} M_{y+5/6} + 2 M_{x+7/6} M_{y+3/6} + \\ & M_{x+9/6} M_{y+1/6} + 2 M_{x+11/6} M_{y-1/6} + M_{x+13/6} M_{y-3/6} \end{split}$$
- $$\begin{split} f_{3}^{x,y} = & M_{x-3/6}M_{y+19/6} + 2M_{x-1/6}M_{y+17/6} + M_{x+1/6}M_{y+15/6} + \\ & 3M_{x+3/6}M_{y+13/6} + 6M_{x+5/6}M_{y+11/6} + 3M_{x+7/6}M_{y+9/6} + \\ & 3M_{x+9/6}M_{y+7/6} + 6M_{x+11/6}M_{y+5/6} + 3M_{x+13/6}M_{y+3/6} + \\ & M_{x+15/6}M_{y+1/6} + 2M_{x+17/6}M_{y-1/6} + M_{x+19/6}M_{y-3/6} \end{split}$$

- Lots of reused moments
- Create a table: $M_{q/6}$
 - with q = -3, -1, 1, 3, 5 ... 55 handling up to 8 moments
- Continuum requires $M_{p/6}$ with p = -4, -2, 0, 2...
- PAH condensation requires similar treatment, but with different grid function (since m_{Dimer} is used)

SootLib

- SootLib: library of soot models for simulation
- Open source, C++, no external libraries besides LAPACK
- Documented
- Examples: simple interface, premixed flame
- Allows consistent model comparison

Soot Processes

- Nucleation
- Growth
- Oxidation
- Coagulation
- PAH condensation

Particle Distributions

- Monodispersed
- Lognormal
- Quadrature MOM
- MOM-Interpolative
 Closure
- Sectional

Documentation

SootLib: SootLib	× +	~			
\leftrightarrow \rightarrow C $ m$ ignite.byu.edu/s	/sootlib_documentation/index.html	🖞 🖈 🔲 🍑 Update 🔅			
SootLib Home	Models Namespaces - Classes - Files -	Qr Search			
SootLib Overview Dependencies and installation Using SootLib	SootLib				
Examples Computational Cost Chemistry and Physical Models Monodispersed Lognormal distribution	Overview Sootlib is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations.				
QMOM MOMIC Sectional Bibliography	Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows.				
Namespaces Classes Files	Required software: • CMake 3.15+ • C++11 • LApack				
	 Optional software: Doxygen (for building documentation) graphviz (for Doxygen) Catch2 (for building tests; will be locally installed automatically via CMake if true) 	SOOTLIB_BUILD_TESTS is			
Ð	Build and installation instructions 1. Create and navigate into a top-level build directory 2. Configure CMake: cmake 3. Build SootLib: make 4. Install SootLib: make install				

Code Interface

Code Interface

Example: Burner Flame

- Burner stabilized premixed flame
- ISF laminar premixed flame 2
 - C₂H₄-air
 - Φ = 2.34
 - v₀ = 6.73 cm/s
- Integrate SootLib into Cantera
 - Modified flamespeed.cpp
 - Fixed T(z) profile, experimental
- Models
 - Gas chemistry: gri3.0
 - Nucleation: Lindstedt
 - Growth: Lindstedt
 - Oxidation: Leung
 - Coagulation: FM
 - PSD: Monodispersed

Example: Burner Flame

- Two cases
 - Coupled gas-soot in Cantera
 - Static calculation
- Static calculation
 - Evolves soot using fixed profiles from the (coupled) Cantera run
 - Τ, ρ, μ, ν, y_i
 - $\hat{M}_{k} = \frac{M_{k}}{\Delta z} = \frac{S_{k}}{\rho v}$ $\hat{M}_{k} = M_{k}/\rho$
 - 2nd order integration
 - Included as a simple code example
- Reasonable agreement with the coupled simulation

Coagulation

- · Large variation with coagulation models used
- Only simple models considered here: Monodispersed, semiemperical chemistry
- · HM and Fuchs give nearly identical results
- Lower FM f_v from fewer particles \rightarrow lower surface area for growth
- · Soot models should consider effects of all model components

QMOM

Static

HM Coagulation

FM Coagulation

- QMOM shows convergence with increasing environments
 - Q2 has 2 moments, 1 quadrature node (equivalent to monodispersed)
 - Q4 has 4 moments, 2 quadrature nodes
 - Q6 has 6 moments, 3 quadrature nodes
 - Q8 has 8 moments, 4 quadrature nodes
- $Q2 \rightarrow Q8$ at z=3 cm

MOMIC

Static

HM Coagulation

FM Coagulation

- FM results show interleaving curves for even and odd number of moments as convergence is approached
- QMOM and MOMIC approach similar converged value for FM.
- MOMIC is higher for HM than QMOM, has less spread.
 - Application of HM is less clean in MOMIC than in QMOM since it is applied on the moment source not "pre-convolution".
- QMOM is simpler, easier to code, and faster to run.

Github

https://github.com/BYUignite/sootlib

	Search or jump to	Pull requests Issues Codespaces Marketplace Explore		ऺॖ +• .		
<complex-block> • New • • New • • New • • New • • • New • • • • New • • • • • • • • • • • • • • • • • • •</complex-block>	BYUignite / sootlib		入 Pin ③ Unwatch :	3 ▼ ⁹⁹ / ₈ Fork 2 ▼ ¹ / ₁₄ Star 0 ▼		
 Practice V randow V r	<> Code ③ Issues 11 Pull re	rquests 📀 Actions 🖽 Projects 🕮 Wiki 😳 Security 🗠 Ins	ights 🕸 Settings			
Worr master branch hart protected Media data data bases betwee merging Luterrow Media data data data data data data data d	⁹ 9 master → ⁹ 7 branches	🛇 1 tag Go to file Add t	ïle ▼ <> Code ▼	About 🕸		
 Wilgine licence file with ficence in the state in documentation with ficence in the state in th	Your master branch isn' Protect this branch from force p	't protected pushing or deletion, or require status checks before merging. Learn more	ct this branch ×	and size distribution representations.	▏▀▎▖▖▖	
 docs minor note on LApack in documentation a months appendix in examples updating examples; removing elapack/ext, not working are updating CMakeLists that for LApack; tested on mac and linux a months appendix in the set of the se	BYUignite licence file	0570110 on Jar	15 🕤 414 commits	述 MIT license ☆ 0 stars		
 examples updating examples; removing elspack/ext, not working src updating CMakeLists.txt for LApack; tested on mac and linux 2 months age etsts BULD: converting to more robust, project-specific CMake variables; r 2 years agi glignore glignore glignore update 10 months ago CMakeLists.txt Documenting source code: formating of top level files done; Doxyfile 3 month ago README.md SootLLib overview SootLib overview SootLib overview SootLib overview SootLib code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Require dostware: Chake 4.6% Code 	docs	minor note on LApack in documentation	2 months ago	③ 3 watching		
 src updating CMakeLists txt for LApack; tested on mac and linux nets BULD: converting to more robust; project-specific CMake variables; r gitignore gitignore gitignore gitignore gitignore updating Gottalists txt Documenting source code: formating of top level files done; boxyfile a dding documentation link to readme c metADME.md SoottLib overview SoottLib overview SoottLib overview SoottLib overview Soottlib is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: 	examples	updating examples; removing eispack/ext, not working	2 months ago	9 2 TORKS		
 tests BUILD: converting to more robust, project-specific CMake variables, r g vests an out the set g vest an out the	src src	updating CMakeLists.txt for LApack; tested on mac and linux	updating CMakeLists.txt for LApack; tested on mac and linux 2 months ago			▖▋▖▋▋▔▖▖▖
 gitignore gitignore update 10 months agg CMakeLists.txt Documenting source code: formating of top level files done; Doxyfile 3 months agg LICENSE licence file 2 months agg README.md adding documentation link to readme 2 months agg README.md adding documentation link to readme 2 months agg SootLLib overview SootLLib overview SootLib overview SootLib overview Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: 	tests	BUILD: converting to more robust, project-specfic CMake variables; r 2 years ago				
 CMakkLists.tx Documenting source code: formating of top level files done; Doxyfile 3 months age LICENSE README.md adding documentation link to readme 2 months age Adding voor first packages Chrifbutors Contributors <l< td=""><td>🗋 .gitignore</td><td>gitignore update</td><td>10 months ago</td><td>Create a new release</td><td></td><td></td></l<>	🗋 .gitignore	gitignore update	10 months ago	Create a new release		
 LICENSE licence file README.md adding documentation link to readme 2 months age README.md CostLib overview SootLib overview Sootlib is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: 	CMakeLists.txt	Documenting source code: formating of top level files done; Doxyfi	le: 3 months ago			
 README.md adding documentation link to readme 2 months ago README.md adding documentation link to readme 2 months ago README.md adding documentation link to readme 2 months ago README.md adding documentation link to readme 2 months ago Contributors ago Contributors and installation Required software: 		licence file	2 months ago	Packages		▰▋
 README.md Contributors 3 rexubits is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: 	C README.md	adding documentation link to readme	2 months ago	No packages published		
SootLib overview Sootlib is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: Contributors 3	i≣ README.md		Ø		▋▀▋▋▚▞▁	
Sootlib is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Image: Character of the source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Image: Character of terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here Required software: Character of terms using moment-based particle size documentation combustion CFD simulations. Detailed code documentation combustion combustion combustion combustion combustion combustion combusticle size documentation combustion combustion co	SootLib overvi	ew		Contributors 3		
Dependencies and installation The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: C++ 94.8% C ++ 94.8% C ++ 94.8%	Sootlib is an open-source C++ library that computes soot source terms using moment-based particle size distribution models for combustion CFD simulations. Detailed code documentation is available here			vbstephens Victoria Stephens		
The code is intended to be built and used on Linux-like systems, including MacOS and the Linux subsystem for Windows. Required software: C++ 94.8% CMake 4.6% C 0.6%	Dependencies	and installation		• · · ·		
C +++ 94.8% ● CMake 4.8% Required software: C 0.6%	The code is intended to be b Windows.	uilt and used on Linux-like systems, including MacOS and the Linux s	ubsystem for	Languages		
	Required software:			 C++ 94.8% CMake 4.6% C 0.6% 		

- CMake 3.15+
- C++11