CMC - Conditional Moment Closure,
. SLFM: map everything to 3 in a lookup table, and
transport 3.
. CMC
-
$$\overline{w}(x) \neq w(\overline{x})$$
, because of horizon Dependence
and fluctuations.
- TSUT, for a Given 3, $\overline{w}(x) \approx w(\overline{x})$
- $\frac{1}{10} \sqrt{1 + \frac{1}{10}} \sqrt$

- Bin up The 3 Domain and Solve not $\langle Y_i \rangle \equiv \overline{Y}_i$ but $\langle Y_i | \overline{3} \rangle$ (That is, The ang Y_i in a given $\overline{3}$ bin) $\rightarrow \langle Y_i \rangle \equiv \int \langle Y_i | \overline{3} \rangle P(\overline{3}) d\overline{3}$

to See Slide

CIME Equation.

. S.S., Homogeneous - looks like Flamelets . netain Unsteady & Spatial Terms - abtain history effects . (PPZ) is Density in X, Y, Z, 3 Space like

p is Density in X, Y, Z Space.

Transported PDF (From Cent)

$$M \text{ is sample space variable for rundom var } \beta$$

$$\frac{1}{2} \left[P(n) \right] = -\frac{1}{2\pi \epsilon} \left[\left\{ u_{k} \right\} M \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[w(n) P(n) \right] - \frac{2^{2}}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n) \left\{ N \right\} P(n) \right] - \frac{1}{2\pi \epsilon} \left[P(n)$$

Monte Carlo approach.

• fluid = Nirtuel Punticles
• work in by a a Radon walk = twoly. Dispession
(macterizing)
• millenizing ·
$$\frac{dyn}{dt} = -(\frac{y^{n}-y}{t}) + w^{n}$$

IEM.
IEM.
others, · Curl.
· FMD. Curl.
· EMST
- SPC.
 $Uargevi + Codon walk: Langevin undel.
 $dx_{n} = u_{n}dt.$
 $dx_{n} = u_{n}dt.$
 $dx_{n} = -(\frac{1}{2} + \frac{z}{4} l_{0}) \frac{u_{n} - u_{n}}{t_{k}} dt + (l_{0} \in)^{l_{0}} l_{0}(dt)^{H_{2}}$
 $T_{t} = k/e$
 ζ is Readon w/ normal Dist est 0 m
and writy valuer.$

· Part Rop The PDF.













