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Other staggering methods have been suggested, for example, the partially
staggered ALE (Arbitrary Lagrangian-Eulerian) method (Hirt et al., 1974),
in which both velocity components are stored at the corners of the pressure
CVs, see Fig. 7.2. This variant has some advantages when the grid is non-
orthogonal, an important one being that the pressure at the boundary need
not be specified. However, it also has drawbacks, notably the possibility of
producing oscillatory pressure or velocity fields.

Other arrangements have not gained wide popularity and will not be
further discussed here.

7.3 Calculation of the Pressure

Solution of the Navier-Stokes equations is complicated by the lack of an in-
dependent equation for the pressure, whose gradient contributes to each of
the three momentum equations. Furthermore, the continuity equation does
not have a dominant variable in incompressible flows. Mass conservation is
a kinematic constraint on the velocity field rather than a dynamic equation.
One way out of this difficulty is to construct the pressure field so as to guar-
antee satisfaction of the continuity equation. This may seem a bit strange
at first, but we shall show below that it is possible. Note that the absolute
pressure is of no significance in an incompressible flow; only the gradient of
the pressure (pressure difference) affects the flow.

In compressible flows the continuity equation can be used to determine
the density and the pressure is calculated from an equation of state. This
approach is not appropriate for incompressible or low Mach number flows,

Within this section we present the basic philosophy behind some of the
most popular methods of pressure-velocity coupling. Section 7.5 presents a
full set of discretized equations which form the basis for writing a computer
code.

7.3.1 The Pressure Equation and its Solution

The momentum equations clearly determine the respective velocity compo-
nents so their roles are clearly defined. This leaves the continuity equation,
which does not contain the pressure, to determine the pressure. How can this
be done? The most common method is based on combining the two equations.
The form of the continuity equation suggests that we take the divergence
of the momentum equation (1.15). The continuity equation can be used to
simplify the resulting equation, leaving a Poisson equation for the pressure:

div (grad p) = —div [div (pvv —S) — pb + %:J—l : (7.14)

In Cartesian coordinates this equation reads:
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For the case of constant density and viscosity, this cquation simplifics fur ().
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the viscous and unsteady terms disappear by virtue of the continnity equatiy,
leaving:
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The pressure equation can be solved by one of the numerical methods for
elliptic equations described in Chaps. 3 and 4. It is important to note that
the right hand side of the pressure equation is a sum of derivatives of terms in
the momentum equations; these must be approximated in a manner consistent
with their treatment in the equations they are derived from.

It is also important to note that the Laplacian operator in the pressure
equation is the product of the divergence operator originating from the con-
tinuity equation and the gradient operator that comes from the momentum
equations. In a numerical approximation, it is essential that the consistency of
these operators be maintained i.e. the approximation of the Poisson equations
must be defined as the product of the divergence and gradient approxima-
tions used in the basic equations. Violation of this constraint leads to lack
of satisfaction of the continuity equation. To emphasize the importance of
this issue, the two derivatives of the pressure in the above equations were
separated: the outer derivative stems from the continuity equation while the
inner derivative arises from the momentum equations. The outer and inner
derivatives may be discretized using different schemes ~ they have to be those
used in the momentum and continuity equations.

A pressure equation of this kind is used to calculate the pressure in both
explicit and implicit solution methods. To maintain consistency among the
approximations used, it is best to derive the equation for the pressure from the
discretized momentum and continuity equations rather than by approximat-
ing the Poisson equation. The pressure equation can also be used to calculate
the pressure from a velocity field obtained by solving vorticity/ streamfunction
equations, see Sect. 7.4.2.

7.3.2 A Simple Explicit Time Advance Scheme

Before considering commonly used methods for solving the steady state
Navier-Stokes equations, let us look at a method for the unsteady equa-
tions that illustrates how the numerical Poisson equation for the pressure is
constructed and the role it plays in enforcing continuity. The choice of the
approximations to the spatial derivatives is not important here so the seni-
discretized (discrete in space but not time) momentum equations are written

symbolically as:
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where d/dz represents a discretized spatial derivative (which could represent
a different approximation in each term) and H; is shorthand notation for the
advective and viscous terms whose treatment is of no importance here.

For simplicity, assume that we wish to solve Eq. (7.17) with the explicit
Euler method for time advancement. We then have:

(pui)ﬂ+l — (pu)™ = At (H," - i-i:—) ) (7.18)
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To apply this method, the velocity at time step n is used to compute HJ!
and, if the pressure is available, dp™/dz; may also be computed. This gives
an estimate of pu; at the new time step n + 1. In general, this velocity field
does not satisfy the continuity equation:
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We have stated an interest in incompressible flows, but these include flows _’:_
with variable density; this is emphasized by including the density. To see how
continuity may be enforced, let us take the numerical divergence (using the

numerical operators used to approximate the continuity equation) of Eq.
(7.18). The result is:
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The first term is the divergence of the new velocity field, which we want to
be zero. The second term is zero if continuity was enforced at time step n;
we shall assume that this is the case but, if it is not, this term should be left , * (_
in the equation. Retaining this term is necessary when an iterative method is N -
used to solve the Poisson equation for the pressure and the iterative process is ARt
not converged completely. Similarly, the divergence of the viscous component . )
of H; should be zero for constant p, but a non-zero value is easily accounted

for. Taking all this into account, the result is the discrete Poisson equation 7
for the pressure p™: S
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Note that the operator §/dz; outside the parentheses is the divergence op-
erator inherited from the continuity equation, while &p /dx; is the pressure
gradient from the momentum equations. If the pressure p* satisfies this dis-

crete Poisson equation, the velocity field at time step n+1 will be divergence
free (in terms of the discrete divergence operator). Note that the time step

<
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© which this pressure belongs is arbitrary. If the pressure gradient terin hy
oeen treated implicitly, we would have p"*! in place of p™ but everything
else would remain unchanged.

This provides the following algorithm for time-advancing the Navigy.
Stokes equations:

e Start with a velocity field u? at time ¢, which is assumed divergence free,
(As noted, if it is not divergence free this can be corrected.)
¢ Compute the combination, HJ*, of the advective and viscous terms and itg
divergence (both need to be retained for later use).
e Solve the Poisson equation for the pressure p".
s Compute the velocity field at the new time step. It will be divergence free,
e The stage is now set for the next time step.

Methods similar to this are commonly used to solve the Navier-Stokes
equations when an accurate time history of the flow is required. The principal
differences in practice are that time advancement methods more accurate
than the first order Euler method are usually used and that some of the
terms may be treated implicitly. Some of these methods will be described
later.

We have shown how solving the Poisson equation for the pressure can
assure that the velocity field satisfies the continuity equation i.e. that it is
divergence free. This idea runs through many of the methods used to solve
both the steady and unsteady Navier-Stokes equations. We shall now study
some of the more commonly used methods for solving the steady Navier-
Stokes equations.

7.3.3 A Simple Implicit Time Advance Method

To see what additional difficulties arise when an implicit method is used to
solve the Navier-Stokes equations, let us construct such a method. Since we
are interested in illuminating certain issues, let us use a scheme based on the
the simplest implicit method, the backward or implicit Euler method. If we
apply this method to Eq. (7.17), we have:
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We see immediately that there are difficulties that were not present in the
explicit method described in the preceding section. Let us consider these one
at a time.

First, there is a problem with the pressure. The divergence of the velocity
field at the new time step must be zero. This can be accomplished in much
the same way as in the explicit method. We take the divergence of Eq. (7.22),
assume that the velocity field at time step n is divergence free (this can be
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corrected for if necessary) and demand that the divergence at the new time
step n + 1 also be zero. This leads to the Poisson equation for the pressure:
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The problem is that the term on the right hand side cannot be computed
until the computation of the velocity field at time n + 1 is completed and
vice versa. As a result, the Poisson equation and the momentum equations
have to be solved simultaneously. That can only be done with some type of
iterative procedure.

Next, even if the pressure were known, Eqgs. (7.22) are a large system of
non-linear equations which must be solved for the velocity field. The structure
of this system of equations is essentially the same as the structure of the
matrix of the finite-differenced Laplace equation so solving them is far from
a trivial matter. If one wishes to solve them accurately, the best procedure
is to adopt the converged results from the preceding time step as the initial
guess for the new velocity field and then converge to the solution at the new
time step using the Newton-Raphson iteration method or a secant method
designed for systems.

An alternative way of dealing with the non-linearity is constructed by
linearizing the equations about the result at the preceding time step. If we
write:

ult! = u? + Au, , (7.24)
then the non-linear term in Egs. (7.22) can be expressed as:
up Pt = wlul + ol Auy + ul Ay + Ay A (7.25)

We expect that, at least for small At, Au; ~ AtOu;/0t, so the last term
in this equation is second order in At and is smaller in magnitude than the
error made in the time discretization. It can therefore be neglected. If we use
a second order method in time, such as the Crank-Nicolson scheme, this term
would be of the same order as the spatial discretization error and we would
still be justified in neglecting it.

We can then write Eq. (7.22) as:
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This method takes advantage of the fact that the non-linearity is quadratic
and removes most of the difficulty arising from it. However, we still need to
So.lve a large system of linear equations with the structure discussed above.
Direct solution of such a system is too expensive to consider so the solution
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needs to be found iteratively. An interesting possibility is to use the altey.
nating direction implicit (ADI) method to split the equations into a series of
one dimensional problems, each of which is block tridiagonal. The solution a4
the new time step can then be found with sufficient accuracy with just one
iteration (one set of block tridiagonal solutions in each direction).

So a reasonable strategy is to use the local linearization based on Eq,
(7.24) and update the equations by the ADI method using the old pressure
gradient. We can then correct the velocity field using the following scheme,

e Call the velocity field computed by updating the momentum equations with
the old pressure gradient u}. It does not satisfy the continuity equation.
e Solve a Poisson equation for the pressure correction:

8 (04p\ _ 1 d(pu])
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e Update the velocity:
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which does satisfy continuity.

With these tricks, the method suggested here is about twice as expensive s
the explicit method per time step.

The method described above is designed to produce an accurate solution
of an unsteady problem. In problems of that kind, the required accuracy in
time usually sets the time step, which will be rather small. Because they
allow large time steps to be used without instability, implicit methods are
often used to solve steady state problems. The idea is to compute in time
until a steady solution is obtained. In this type of calculation, the error made
in linearizing the problem is no longer negligible and the type of method
described here may not be the best choice. Methods designed for solving
steady state problems are given in the next section. They introduce other
means of getting around the problems we encountered here.

7.3.4 Implicit Pressure-Correction Methods

As noted in Chap. 6, many methods for steady problems can be regarded as
golving an unsteady problem until a steady state is reached. The pl‘il'JCiF'a1
difference is that, when solving an unsteady problem, the time step is chosen
go that an accurate history is obtained while, when a steady solution is soughfh
large time steps are used to try to reach the steady state quickly. Tmplict
methods are preferred for steady and slow-transient flows, because they have
less stringent time step restrictions than explicit schemes (they may not haveé

any).

‘ TR UF] ) e—
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Many solution methods for steady incompressible flows are of the latter
type; some of the most popular ones can be regarded as variations on the
r;lethOd of the preceding section. They use a pressure (or pressure-correction)
equation 0 enforce mass conservation at each time step or, in the language
preferred for steady solvers, each outer iteration. We now look at some of
these methods.

If an implicit method is used to advance the momentum equations in
time, the discretized equations for the velocities at the new time step are
non-linear. If the pressure gradient term is not included in the source term,
these may be written:

n-1
s+ A = oy - (B0 (129
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As always, P is the index of an arbitrary velocity node, and index ! denotes
the neighbor points that appear in the discretized momentum equation, The
source term () contains all of the terms that may be explicitly computed in
terms of u]* as well as any body force or other linearized terms that may de-
pend on the u** or other variables at the new time level (like temperature)
- hence the superscript n + 1. The pressure term is written in symbolic dif-
ference form to emphasize the independence of the solution method from the
discretization approximation for the spatial derivatives. The discretizations
of the spatial derivatives may be of any order or any type described in Chap.
3.

Due to the non-linearity and coupling of the underlying differential equa-
tions, Egs. (7.29) cannot be solved directly as the coefficients 4 and, possibly,
the source term, depend on the unknown solution u?**. Iterative solution is
the only choice; some approaches were described in Chap. 5. If we are com-
puting an unsteady flow and time accuracy is required, iteration must be
continued within each time step until the entire system of non-linear equa-
tions is satisfied to within a narrow tolerance. For steady flows, the tolerance
can be much more generous; one can then either take an infinite time step
and iterate until the steady non-linear equations are satisfied, or march in
time without requiring full satisfaction of the non-linear equations at each
time step.

The iterations within one time step, in which the coefficient and source
matrices are updated, are called outer iterations to distinguish them from
the inner iterations performed on linear systems with fixed coefficients. Qp
€ach outer iteration, the equations solved are:

A‘Ri % Ui, Mk m—1 me_l
plUp+ ZA; Ui = Qui  — 5z; ) o ’ (7.30)
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We dropped the time step index n + 1 and introduced an outer iteration
tounter m; 4! thus represents the current estimate of the solution ultl Ag
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the beginning of each outer iteration, the terms on the right hand side of Eq
(7.30) are evaluated using the variables at the preceding onter iteration,

The momentum equations are usually solved sequentially ie. the so of
algebraic equations for each component of the momentum is solved in tury
treating the grid point values of its dominant velocity component as the soié
set of unknowns, Since the pressure used in these iterations was obtained from
the previous outer iteration or time step, the velocitics computed from Egg,
(7.30) do not normally satisfy the discretized continuity equation. To enforce
the continuity condition, the velocities nced to be corrected; this requires
modification of the pressure field; the manner of doing this is described next,

The velocity at node P, obtained by solving the lincarized momentum
equations (7.30), can be formally expressed as:

O 1L A O it (13
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As already stated, these velocities do not satisfy the continuity equation,
so ulp' is not the final value of the velocity for iteration m; it is a predicted
value, which is why it carries an asterisk (*). The corrected final values should
satisfy the continuity equation. For convenience, the first term on the right
hand side of the above equations is called 4p:

* ~ N * 1 g et
U?:lp = u‘-‘p - 'E;;‘ ( }:ﬁ:c.; )P . (732)

The velocity field @™ can be thought of as one from which the contribution of
the pressure gradient has been removed. Because the method is implicit, this
is not the velocity that would be obtained by dropping the pressure gradient

entirely from Eq. (7.30).
The next task is to correct the velocities so that they satisfy the continuity

equation:

S(pul’) _ g (7.33)
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which can be achieved by correcting the pressure field. The corrected veloci-
ties and pressure are linked by (see Eq. (7.32)):

me 1 (6™
=55~ 5 (351), o

Continuity is now enforced by inserting this expression for u]* into the con-
tinuity equation (7.33), to yield a discrete Poisson equation for the pressure:

il (o)) - [ -
6z¢ | Ap' \ 0xi /]p 0z |p
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As noted earlier, the derivatives of the pressure inside the brackets must be
discretized in the same way they are discretized in the momentum equations;
the outer derivatives, which come from the continuity equation, must be
3pproximated in the way they are discretized in the continuity equation.

After solving the Poisson equation for the pressure, (7.35), the final ve-
locity field at the new iteration, ul®, is calculated from Eq. (7.34). At this
point, we have a velocity field which satisfies the continuity condition, but the
velocity and pressure fields do not satisfy the momentum equations (7.30).
We begin another outer iteration and the process is continued until a ve-
locity field which satisfies both the momentum and continuity equations is
obtained.

This method is essentially a variation on the one presented in the pre-
ceding section. Methods of this kind, which first construct velocity field that
does not satisfy the continuity equation and then correct it by subtracting
something (usually a pressure gradient) are known as projection methods.
The name is derived from the concept that the divergence-producing part of
the field is projected out.

In one of the most common methods of this type, a pressure-correction
is used instead of the actual pressure. The velocities computed from the lin- AR«
earized momentum equations and the pressure p™~! are taken as provisional
values to which a small correction must be added:

W =u™ 44 and pm=p™ !4y (7.36)

If these are substituted into the momentum equations (7.30), we obtain the
relation between the velocity and pressure corrections:
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where @} is defined by (see Eq. (7.31)):

Aru!
i p= _ Ay Af“ B, (7.38)
P

Application of the discretized continuity equation (7.33) to corrected ve-
locities and use of expression (7.37) produces the following pressure-correction

equation:
(o ()] <[] ]
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The velocity corrections i} are unknown at this point, so it is common prac-
tice to neglect them. This is hard to justify and is probably the major reason
why the resulting method does not converge very rapidly.

Alternative methods that are less brutal to the velocity correction will
be described below. In the present method, once the pressure correction has
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been solved for, the velocities are updated using Eqs. (7.36) and (7.37). Tpi,
is known as the SIMPLE algorithm (Caretto et al., 1972), an acronym whoge
e 0rigin will not be detailed. We shall discuss its properties below.

. "T""-‘C Almore gentle way of treating the last term in the pressure-correction
equation (7.39) is to approximate it rather than neglecting it. One coylg
approximate the velocity correction uj at any node by a weighted mean of
the neighbor values, for example,

YA
u'»P ~ u_l,f . 740
1, zt A% ( )

This allows us to approximate @} p from Eq. (7.38) as
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which, when inserted in Eq. (7.37), leads to the following approximate relation
between u; and p':

u T T— 7.42
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With this approximation the coefficient Ap’ in Eq. (7.39) is replaced by
A% + 3, A and the last term disappears. This is known as the SIMPLEC
algorithm (van Doormal and Raithby, 1984).
’ o Still another method of this general type is derived by neglecting i in
‘P] “" the first correction step as in the SIMPLE method but following the correc-
tion with another corrector step. The second correction to the velocity u" is
defined by (see Eq. (7.37)):

1 5})”
W sl ena s | SEL] 4
Uyp = Ui p A;" (Jmi)p ) (7 3)

where 4! is calculated from Eq. (7.38) after u} has been calculated from Eq.
(7.37) with @} neglected. Application of the discretized continuity equation
(7.33) to corrected velocities leads to the second pressure-correction equation:

i ()], =, &

Note that the coefficients on the left hand side are the same as in Eq. (7.39);
which can be exploited (a factorization of the matrix may be stored and
reused). Still further corrector steps can be constructed in the same way;
but this is seldom done. This procedure is essentially an iterative method for
solving Bq. (7.39) with the last term treated explicitly; it is known 25 the
PISO algorithm (Issa, 1986).
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inder-ralaxation, as explained in Sect. 5.4.2. In I.lu'z,t.' e, Ap = = Y A ™
where @y, is the under-relaxation factor for V(:lt}('.lf.lﬂf-l' (usnally the same for
all components, but it need not be #0), We then obtain:

ap = 1=y, (750)

which has been found to be ncarly optimum and yiclds almost the same
convergence rate for onter iterations as the SIMPLIEC method,

The solution algorithm for this class of methods can be summarized ag
follows:

1. Start calculation of the fields at the new time f,41 using the latest solu-
tion u} and p" as starting estimates for witt and prt,

2. Assemble and solve the lincarized algebraic equation systems for the ve-

locity components (momentum equations) to obtain ul™*.

Agsemble and solve the pressure-correction equation to obtain p',

. Correct the velocities and pressure to obtain the velocity field uf", which
gatigfies the continuity equation, and the new pressure p™.
For the PISO algorithm, solve the second pressure-correction equation
and correct both velocities and pressure again,

For SIMPLER, solve the pressure equation for p™ after uf* is obtained
above,

- oo

_C,“(

Return to step 2 and repeat, using uf* and p™ as improved estimates for

uf™ and p"*!, until all corrections are negligibly small.
6. Advance to the next time step,

Methods of this kind are fairly efficient, for solving steady state prob-
lems; their convergence can be improved by the multigrid strategy, as will be
demonstrated in Chap. 11, There are many derivatives of the above methods
which are named differently, but they all have roots in the ideas described

above anld .v:rill not be listed here. We shall show below that the artificial
compressibility method can also be interproted in a similar way.

7.4 Other Methods

7.4.1 Fractional Step Methods

In the methods of the preceding gec

- : tion, the pressure i enforce con*
anuity. It is also uged in computin Ko iyt i o

& the velocity field in the first step of the
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aother similar meth-od of this kind was proposed
3 c:lled SIMPLER. In it, the pressure-correction eqbuyatpisrla?%rgglfam
trst with the last term neglected as in SIMPLE. The pressyre -correscts.owed
“ptained is 1'me.;l 1r?ﬂy to correct the velocity field so that it satisfies contfon‘30
. to obtain " Thfzmnfew pressure field is calculated from the pr;::’ty
g atioln (7.35) using 4" instead of 4. This is possible because u* i nl;:
ilable.

avalAS already noted, due to the neglect of it} in Eq. (7.39)
o neglecting it in Eq. (7.37)), the SIMPLE algorithm does not conver e
rapidly. Its performance depends greatly on the size of time step, or - fcg)r
steady flows — on the value of the under-relaxation parameter us:ed in the
mnomentum equations. It has been found by trial and error that convergence
can be improved if one adds only a portion of p' to p™=1, i.e. if one takes

(which is equivalent

pm = pm—l < O!pp' (7.45)

after the pressure-correction equation is solved, where 0 < o, < 1. SIMPLEC,
SIMPLER and PISO do not need under-relaxation of the pressure correction.

One can derive an optimum relation between the under-relaxation factors
for velocities and pressure by the following argument’.
The velocities in the SIMPLE method are corrected by

1 [6p
A = — = 46
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ie., i, p is neglected. To make up for this crudeness, we may now go back
to the momentum equations (7.31) and look for pressure which will satisfy
these equations when uJ** is replaced by corrected velocities uf", which now
satisfy the continuity equation (this is the path that leads to the pressure
equation in SIMPLER). By assuming that the final pressure correction 18
app', we arrive at the following equation:

. 1 (dp 7.47)
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By making use of Eq. (7.46), we arrive at the following expression for ap:

Gy =1-— ﬁ._.:ﬁ (748)
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We can calculate i » using Eq. (7.38) but, I m‘{lt“dlmenmgealcz;gz:tr: 4
W would have more than one equation from which o, can

A e eqt imation (7.41) used
However, if instead of calculating il p, W use the appro

in SIMPI, tion reduces to:
____________PC, then the above equa ifferent route.

: . _ i
1 Raithby and Schneider (1979) found this relation following &
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