
1

1

Introduction to parallel
computing

Introduction

• As computers get faster, problems get more
complex and computationally expensive.

• Most of engineering involves solving
mathematical models of physical systems—
this means computing, either on paper, or by
machine!

• Increase number of grid points
• Increase number of dimensions

– x, y, z, time, state space, etc.

• Increase problem complexity
– Add more chemical species
– Resolve more timescales
– Run in larger, more realistic domains
– Do more realizations.
– Relax simplifying assumptions

• Require faster turnaround time
– How long are you willing to wait: 1 day to 2 weeks.
– Often, real-time data processing is desired.

2

2

• Astrophysics—supernovae
• Biology—protein dynamics
• Quantum Chemistry

• Fusion—tokamak simulation
• Combustion—turbulence flame interactions
• Climate—weather, CO2

• Oil exploration

• Medical imaging
• Financial and economic modeling
• Web search engines

Parallel Computing Examples
3

Parallel Computing

• Parallel computing
– Reduce compute time
– Increase problem size

• Irrespective of time, some
problems are just too big for
one CPU.

• Split up problem to run on
multiple CPUs

4

The Problem serial

parallel

3

Classification—Flynn’s Taxononmy

• SISD
– The usual workstation,
– Nonparallel

5

• SIMD
– All processors execute same

instruction at the same time, but on
different data streams.

– In many workstations: GPUs

• MIMD
– Processors run independent code on

independent data.
– Most common parallel category
– Often write one code, but each

processor runs own version, with code
exectution depending on processor ID.

• MISD
– Several processors work on same

data.
– Uncommon
– Cryptography, data filtering

See top500.org for current supercomputer info.

Hardware

• Two main machine types: shared memory and distributed memory
• Shared: each processor has direct access to all memory.

– Fast data transfers, simpler programming
– Limited number of processors (low scalability)
– Program with POSIX threads, openMP

• Distributed: each processor has own memory.
– Highly scalable
– More difficult to program.
– Program with message passing: MPI

6

Shared Memory

Distributed Memory

4

Interconnection Networks
7

Direct Connection 3D Torus: Jaguar
2D Torus

3D Hypercube 4D Hypercube

Other: Switch, Mesh, Omega network

Parallel Programming

• Threads Model
– Usually shared memory
– Library of routines
– Compiler directives
– Think of threads as running

different subroutines at once
(MULTI-TASKING)

– POSIX threads or P-threads
• C language.
• Very explicit, hard to code.

– OpenMP
• Compiler directives
• Modify your existing code
• Fortran and C/C++
• Example: wrapping do loops

• Message Passing Model
– Distributed machines (works on

shared too).
– Processors are independent,

communicate by passing
messages.

– Proc 1 needs data from Proc 2,
so P2 has a send message and
P1 has a receive message

• These show up as function calls:
MPI_send(who, data),
MPI_recieve(who, data).

– MPI is the de facto standard.
Pretty much everything else is
obsolete.

• MPICH, LamMPI, Open MPI are
implementations of the MPI standard.

8

Food
Phone

Focus
Drive

5

How to parallelize your problem?

• Embarassingly parallel
– Little or no effort to separate

the problem into parallel tasks.
• Farm out obvious, independent

tasks

– Graphics processing
• Each pixel is independent

– Post processing multiple files
in the same way.

• Domain decomposition
– Perfect for spatial problems,

numerical grids.
– Particle flows.
– Data based

• Functional decomposition
– Algorithm-based.
– Parallelize on tasks

9

T1 T2

T3

Jacobian

Diffusion
Fluxes

Some concepts and definitions

• Speedup Factor
– S(p) = tserial / tparallel

– S(p) = (best serial time) / (parallel time on p procs)
– Serial and parallel algorithms are usually different.
– Maximum speedup is p

• Unless machines are different, or there is a nondeterministic algorithm.
• This is rare, but happens.

• Efficiency
– E = S/p = tserial/p*tparallel

• Tradeoff between communication and computation.
– Communication takes time, reduces efficiency
– Minimize communication between processors

• Algorithm choice
• Parallelization scheme
• Communication network

– As p increases, time decreases, but E decreases.

10

6

Amdahl’s Law
11

Amdahl’s Law
12

Linear speedup is ideal

Max Speedup limited to 1/f as p
gets large!

So if f=5%, max speedup = 20!

What is “wrong” with this analysis?

Assumes that f is constant as p
Increases. Usually as p increases
the problem size increases so f
Decreases. (That was close!)

7

Example, S3D DNS Solver

• Cartesian domain decomposition
– Only nearest neighbor

communication.

– Gives ~linear weak scaling since
communication to computation ratio
remains fixed

– Communication scales with cube
surface area, but computation goes
with cube volume

• Explicit finite difference solver
– 8th order central differences

– 4th order, low storage RK integrator

• Solve reacting, compressible, Navier-
Stokes equations.

13

Strong scaling: fix problem size, vary processors

Weak scaling: vary problem size with processors
to keep a fixed load.

Which is more relevant is problem dependent
(weak scaling will give “nicer” results.

My first MPI Program

• Open MPI
• Compile:

mpicxx myfirstMPI.cc
• Run:

mpirun –np 128 a.out

• Include the mpi library
• MPI_Init: startup MPI, the first function

called
• MPI_Comm_rank: get rank of processor

making the call.
– Relative to communicator MPI_COMM_WORLD

(which just means all the processors). A
communicator is a group of processors.

– Processors ordered 0 to N-1.

• MPI_Comm_size: get # of procs, N
• MPI_Finalize: shutdown MPI (last MPI

call).
• Note syntax.

14

This works, but its silly, why?

Just replace ALL if statements with 1 cout statement

8

Parallelize the Mandelbrot Set

• Embarassingly parallel, (but
not as embarassing as some).

• Each pixel is computed
independently.

• How to divide up the domain?
– Random? (why, too hard)
– Pixel by pixel? (way more pixels

than processors, so too much
assignment (scalar) and gathering
(communication).

– Square grid? (its embarrasing,
why make it hard—2D)

– Go line-by-line, or chunk the lines.

15

16

Code Structure
16

Initialize MPI

Master Collects Data
From Slaves

Slaves Compute and
Send to Master

9

Send and Receive Messages
17

MPI_Recv(void* message,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_COMM comm,
MPI_Status status)

MPI_Send(void* message,
int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_COMM comm)

MPI_Recv(&pdata[0][0],
600*nlpp,
MPI_INT,
MPI_ANY_SOURCE,
MPI_ANY_TAG,
MPI_COMM_WORLD,
&status)

MPI_ANY_SOURCE is a built-in variable, but could be just an integer corresponding to
a given processor.

Same with MPI_ANY_TAG.

The status variable is declared as MPI_Status status.

MPI_Send(&pdata[0][0],
600*nlpp,
MPI_INT,
0
0
MPI_COMM_WORLD)

Load Balancing
18

• Master-slave arrangement.
• One processor coordinates,

gathers, directs, the others
compute.

• Cost is not uniform over
domain
– Some processors will finish

before others, and waste time.
• How to fix?

– Divide into smaller chunks and
farm them out as processors
become available.

– One could even dynamically
determine workload and adjust
optimal chunk size on the fly.

Master

Sl
av

es

10

Resources
19

üMany online tutorials for MPI and parallel programming.
üPacheco “Parallel Programming with MPI” is a good introductory text

