Introduction to parallel
computing

Introduction

» As computers get faster, problems get more
complex and computationally expensive.

» Most of engineering involves solving
mathematical models of physical systems—
this means computing, either on paper, or by
machine!

* Increase number of grid points

* Increase number of dimensions

- X, Y, z, time, state space, etc. 'y

* Increase problem complexity

Reynolds-averaged
Simulation

TIME SCALE

Large Eddy

. . kS 2 Simulation
— Add more chemical species <
— Resolve more timescales Direct Numerical
. L . N Simulation
— Run in larger, more realistic domains 24
— Do more realizations.
— Relax simplifying assumptions L et

* Require faster turnaround time
— How long are you willing to wait: 1 day to 2 weeks.

Molecula
Dynanmics,

10
ps

Quantum’

— Often, real-time data processing is desired. Mechanics LENGTH SCALE
om nm wm mm
o™ 10° 10° 10°

Parallel Computing Examples

Astrophysics—supernovae
» Biology—protein dynamics
* Quantum Chemistry

» Fusion—tokamak simulation
» Combustion—turbulence flame interactions
* Climate—weather, CO,
* Qil exploration

* Medical imaging

+ Financial and economic modeling

| Web search engines GO Og[e“

» Parallel computing
— Reduce compute time

— Increase problem size

* Irrespective of time, some
problems are just too big for
one CPU.

» Split up problem to run on
multiple CPUs

The Problem serial
s

parallel

YWhat 1§ Five robbers were robbing for yowand.
ey each recrutted. Sile are robbers o rob
foryou2

Classification—Flynn’s Taxononmy

. SISD + MISD
— The usual workstation — Several processors work on same
’ data.
— Nonparallel
— Uncommon

— Cryptography, data filtering

SIMD « MIMD

— Processors run independent code on
independent data.

— All processors execute same
instruction at the same time, but on
different data streams. — Most common parallel category

- In many workstations: GPUs — Often write one code, but each

processor runs own version, with code

exectution depending on processor ID.
See top500.0rg for current supercomputer info.

Hardware

Distributed Memory

Shared Memory

¢ ' $ ¢ 4 Y

* Two main machine types: shared memory and distributed memory
» Shared: each processor has direct access to all memory.

— Fast data transfers, simpler programming

— Limited number of processors (low scalability)

— Program with POSIX threads, openMP

Distributed: each processor has own memory.

— Highly scalable

— More difficult to program.

— Program with message passing: MPI

Interconnection Networks

Direct Connection

2D Torus

3D Hypercube

Other: Switch, Mesh, Omega network

3D Torus: Jaguar

* Threads Model

Usually shared memory
Library of routines
Compiler directives

Think of threads as running
different subroutines at once
(MULTI-TASKING)

— POSIX threads or P-threads
« Clanguage.
* Very explicit, hard to code.
— OpenMP
» Compiler directives
* Modify your existing code
» Fortran and C/C++
« Example: wrapping do loops

How to parallelize your problem?

* Embarassingly parallel

— Little or no effort to separate
the problem into parallel tasks.

« Farm out obvious, independent
tasks

— Graphics processing
« Each pixel is independent BLOCK cveLic

1D [T
— Post processing multiple files D
in the same way.
* Domain decomposition BLOGK,~ - BLOGCK BLOCK, BLOCK

— Perfect for spatial problems, F
numerical grids.

- Part|C|e ﬂOWS- cycLic, * * CYCLIC CYCLIC, CYCLIC
— Data based T
+ Functional decomposition \ﬁ
— Algorithm-based. I =
. Diffusion
— Parallelize on tasks Fluxes \-)E

Some concepts and definitions

» Speedup Factor
— S(p) = tserial / tparaliel
— S(p) = (best serial time) / (parallel time on p procs)
— Serial and parallel algorithms are usually different.
— Maximum speedup is p
» Unless machines are different, or there is a nondeterministic algorithm.
+ This is rare, but happens.
» Efficiency
— E = S/p = tserialP*toarallel
+ Tradeoff between communication and computation.
— Communication takes time, reduces efficiency

— Minimize communication between processors
« Algorithm choice
< Parallelization scheme
« Communication network

— As pincreases, time decreases, but E decreases.

Amdahl’s Law

fts |

(1 - ')ts

Serial section ‘

Parallelizable sections

(a) One processor[I l

(b) Multiple [
processors

(1-Nts/p

p processors

Amdahl’'s Law

tS
SO =G A =Pip " T+p-1F

20- f=0%
Y
@ 16+
e
8 12
= f=5%
3 gl
g 8 f=10%
(7

4/ f=20%

4 8 12 16 20
Number of processors, p

Linear speedup is ideal

Max Speedup limited to 1/f as p
gets large!

So if f=5%, max speedup = 20!

What is “wrong” with this analysis?

Assumes that f is constant as p
Increases. Usually as p increases
the problem size increases so f
Decreases. (That was close!)

1000 T T T T

+ Cartesian domain decomposition

PSR

— Only nearest neighbor
communication.

— Gives ~linear weak scaling since XT(ORNL) |

communication to computation ratio
remains fixed

[Opteron(Sandia)

| PS(NERSC) Itanium(PNNL)
L — ™ xieonny
;

— Communication scales with cube
surface area, but computation goes)))
T 10 100 1000 10000
with cube volume Number of processors

Cost per grid point per time-step [us]
>
o

Q

« Explicit finite difference solver

— 8 order central differences
Strong scaling: fix problem size, vary processors

— 4t order, low storage RK integrator

« Solve reacting compressible Navier- Weak scaling: vary problem size with processors
2’ ’ to keep a fixed load.
Stokes equations.

Which is more relevant is problem dependent

(weak scaling will give “nicer” results.

My first MPI Program

* Open MPI . .
. #include <iostreams
+ Compile:
. . #include <mpi.h>
mpicxx myfirstMPl.cc
. Run: using namespace std;
mpirun -np 128 a.out int main(int argc, char* argv[]) {
* Include the mpi library int myid, nprocs, ierr;
. X . MPI_Status status;
* MPL_Init: startup MPI, the first function
led MPI_Init(&argc, &argv);
calle MPI_Comm_rank(MPI_COMM_WORLD, &myid);
+ MPI_Comm_rank: get rank of processor | MP1-Conm_size(MPLCOMM_HORLD, &nprocs);
making the call. iF(myid--0)

. . cout << endl << "Hello from process << myid << endl;
— Relative to communicator MPI_COMM_WORLD | ¢ ia 1y

(which just means all the processors). A cout << endl << "Hello from process " << myid << endl;
communicator is a group of processors. 1F(myid==2)
— Processors ordered 0 to N-1. cout << endl << "Hello from process " << myid << endl;
. if(myid==3)
. MP'_COmm_SIZe: get # of procs, N cout << endl << "Hello from process " << myid << endl;
* MPI_Finalize: shutdown MPI (last MPI MPI_Finalize();
Ca”)' return 9; ; : : 2
) This works, but its silly, why?

* Note syntax.

Just replace ALL if statements with 1 cout statement

* Embarassingly parallel, (but
not as embarassing as some).

» Each pixel is computed
independently.

* How to divide up the domain?

Parallelize the Mandelbrot Set

Random? (why, too hard)

Pixel by pixel? (way more pixels
than processors, so too much
assignment (scalar) and gathering
(communication).

Square grid? (its embarrasing,
why make it hard—2D)

Go line-by-line, or chunk the lines.

Master Collects Data -
From Slaves -

Slaves Compute and
Send to Master -

Code Structure

Initialize MPI

MPI_Comm_.
MPI_Com

nlpp
pdata[nlpp] [

npdone < nproc- ; npdones++) {

ata[][],
MPI_COMM_Y

pdatal][], *nlpp, MPI_INT, , , MPI_COMM_WORLD);

MPI_Finalize

return ;

Send and Receive Messages

MPI_Send(void* message, MPI_Send(&pdata[0][0],
int count, 600*nlpp,
MPI_Datatype datatype, MPIL_INT,
int dest, 0
int tag, 0
MPI_COMM comm) MPI_COMM_WORLD)
(MPI_Recv(void* message, MPI_Recv(&pdata[0][0], \
int count, 600*nlpp,
MPI_Datatype datatype, MPI_INT,
int source, MPI_ANY_SOURCE,
int tag, MPI_ANY_TAG,
MPI_COMM comm, MPI_COMM_WORLD,
\ MPI_Status status) &status) /
MPI_ANY_SOURCE is a built-in variable, but could be just an integer corresponding to
a given processor.
Same with MPI_ANY_TAG.
The status variable is declared as MPI_Status status.

Load Balancing

| Master

* Master-slave arrangement.

* One processor coordinates,
gathers, directs, the others
compute.

¢ Costis not uniform over
domain

— Some processors will finish
before others, and waste time.

* How to fix?

— Divide into smaller chunks and
farm them out as processors
become available.

— One could even dynamically
determine workload and adjust
optimal chunk size on the fly.

<>][e

peE 0 P D
BYU Home) ra a0 Mary Lou Futon Supercomputg Laborsory Resourcos
FSL Resources

The Fulton Supercomputing Lab offers a total of 2780 CPU cores
and 5752 GB (5.6 T8) of memry across all of our systems. A 30 T8

systems.
Installed (based on Red Hat Enterprise Linux v8.1).
maryloud
2492 processor cores

4984 GB total memory
Bonchmarked at approximately 12.5 TFlops.

623 compute nodes
2x Dual-core Inel EMBAT processors 2.6 GHz (4
cores) each

8GB memory pernode

Queue name: batch (defaut)

marylous Quad-core nodes

256 processor cores

512 GB total memory.

32 compute nodes

2x Quad-core Intel Harpertown EMBAT processors
2.6 GHz (8 cores) each

16 GB memory per node

Queue name: quad

Large memory (128 GB) nodes

Information oc
256 GB total memory

2 compute nodes
'4x Quad-core AMD Opteron 8356 processors (16
128 GB memory per node

Interactive node: mme fsL.byu.edu (on campus)
Queue name: mem128.

©® OO Iraand Marylou Fulton Supercomputing Laboratory - Resources
52| | + | Y http://marylou.byu.eduresources.phy. [A(Q- MPI tutor

Calendar

No

Resources

800 Introduction to Parallel Computing
[<]>](c @ hups:/jcomputing.linl.gov/tutorias Q- Google,

800 Home | TOPS00 Supercomputing Sites.
< &= hitp://t0p500.0rg/ B(Q- Google »

Tutriat | Exercises | Absiracts | LC Workshoos | Conments | Search |

© Ill
oo »

Introduction to Parallel Compi

Blaise Bamey, Lawrence Livermore National Laboratory
Table of Contents PROJECT | LISTS | STATISTICS | RESOURCES | NEWS
1. Absiract
2] B
1. What is Parallel Computing? I » ISC'09 Conference Program s
2. Why Use Parallel Computing? EORL0 Syaters sl /200% Set - Meeting in Hamburg Promi
3 0’"]% s and Terminalogy to Be Most lllustrious Ever
" von Neumann Compu Roadrunner - BladeCenter
2. Flyon's Classcal Taxonomy QS22/LS21 Cluster, Vn, 20000222 19:34
3. Some General Paralel Terminolo PowerXCell & 3.2 Ghz / HAMBURG, Germany ~ The conference p
4. Parallel Computer Memory Architectures ng;;f‘" EC 1.8 GHz , Voltalre ' for the 2009 Intemnational Supercomputing
1. Shared Memor Gonference (ISC'09) s now finalized, and
2. Distributed Memory Jaguar - Cray XT5QC23 | according to ISC'09 General Chir Prf. H.
3. Hybrid Distributed-Shared Memory Ghz Meuer, this years conference program is ¢
. Ratallel Programming Models Pleiades - SGI Alx ICE be the most llustrious n the 24-year histo
Dene G005 Xeen GCS028 tnacanornce. Theyears coference i
X Memory Mode!
3 Threads Model “ held June 2326 in Hamburg.
- Thseads Model BlueGenelL - eServer Blue
4 s Geno Soltion » Read moro
. Data Paralel Model —
er Models Blue GenelP Solution
b Do s » Jaguar Chases Roadrunner, b
Designing Parallel Programs - :
1. Automati vs, Manual Paralelzation e ey s ana#20: | Can't Grab Top Spot on Latest |
2. Understand the Problem and the Progeam Infinband World’s TOP500 Supercomputer
& B Franklin - Cray XT4 QuadCore | 120064114 0650
Communications 3GHz The 32nd edition of the closely watched i
. Synchronizai
. Synchronization g
e s Jaguar - Cray XT4 QuadCore | the world's TOP500 supercomputers has |
7. Loat Batancing 2.1GHz boen issued, with the 1.105 petafiop/s 1B
8. Granularity Rod Storm - Sandia/ Cray Red | SUPercomputer at Los Alamos National
9. 10 Stom, XTa/4, 2.4/2.2 Griz . Laboratory holding on to the top spot tfre
10. Limits and Coss of Paralel Programming dualiquad core achieved in June 2008
2 paormance Anclysis snd Tunin Dauning S000A - Dauniog | The Los Alamos system, ricknamed
S Roadrurner, was slightly enhanced since .+
ray Processing i i 5
L e Infiniband, Windows HPG 2008 | o v coriid o chatonoe i]

v'Many online tutorials for MPI and parallel programming.
v'Pacheco “Parallel Programming with MPI” is a good introductory text

10

