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Introduction to parallel 
computing

 

Introduction

• As computers get faster, problems get more 
complex and computationally expensive.

• Most of engineering involves solving 
mathematical models of physical systems—
this means computing, either on paper, or by 
machine!

• Increase number of grid points
• Increase number of dimensions

– x, y, z, time, state space, etc.

• Increase problem complexity
– Add more chemical species
– Resolve more timescales
– Run in larger, more realistic domains
– Do more realizations.  
– Relax simplifying assumptions

• Require faster turnaround time
– How long are you willing to wait: 1 day to 2 weeks.
– Often, real-time data processing is desired.
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• Astrophysics—supernovae
• Biology—protein dynamics
• Quantum Chemistry

• Fusion—tokamak simulation
• Combustion—turbulence flame interactions
• Climate—weather, CO2

• Oil exploration

• Medical imaging
• Financial and economic modeling
• Web search engines

Parallel Computing Examples
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Parallel Computing

• Parallel computing
– Reduce compute time
– Increase problem size

• Irrespective of time, some 
problems are just too big for 
one CPU.

• Split up problem to run on 
multiple CPUs
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Classification—Flynn’s Taxononmy

• SISD
– The usual workstation,
– Nonparallel
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• SIMD
– All processors execute same 

instruction at the same time, but on 
different data streams.

– In many workstations: GPUs

• MIMD
– Processors run independent code on 

independent data.
– Most common parallel category
– Often write one code, but each 

processor runs own version, with code 
exectution depending on processor ID.

• MISD
– Several processors work on same 

data.
– Uncommon
– Cryptography, data filtering

See top500.org for current supercomputer info.

Hardware

• Two main machine types: shared memory and distributed memory
• Shared: each processor has direct access to all memory.

– Fast data transfers, simpler programming
– Limited number of processors (low scalability)
– Program with POSIX threads, openMP

• Distributed: each processor has own memory.
– Highly scalable
– More difficult to program.
– Program with message passing: MPI
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Interconnection Networks 
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Direct Connection 3D Torus: Jaguar
2D Torus

3D Hypercube 4D Hypercube

Other: Switch, Mesh, Omega network

Parallel Programming

• Threads Model
– Usually shared memory
– Library of routines
– Compiler directives
– Think of threads as running 

different subroutines at once 
(MULTI-TASKING)

– POSIX threads or P-threads
• C language.
• Very explicit, hard to code.

– OpenMP
• Compiler directives
• Modify your existing code
• Fortran and C/C++
• Example: wrapping do loops

• Message Passing Model
– Distributed machines (works on 

shared too).
– Processors are independent, 

communicate by passing 
messages.

– Proc 1 needs data from Proc 2, 
so P2 has a send message and 
P1 has a receive message

• These show up as function calls: 
MPI_send(who, data), 
MPI_recieve(who, data).

– MPI is the de facto standard.  
Pretty much everything else is 
obsolete.

• MPICH, LamMPI, Open MPI are 
implementations of the MPI standard.
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How to parallelize your problem?

• Embarassingly parallel
– Little or no effort to separate 

the problem into parallel tasks.
• Farm out obvious, independent 

tasks

– Graphics processing
• Each pixel is independent

– Post processing multiple files 
in the same way.

• Domain decomposition
– Perfect for spatial problems, 

numerical grids.
– Particle flows.
– Data based

• Functional decomposition
– Algorithm-based.
– Parallelize on tasks
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Some concepts and definitions

• Speedup Factor
– S(p) = tserial / tparallel

– S(p) = (best serial time) / (parallel time on p procs)
– Serial and parallel algorithms are usually different.
– Maximum speedup is p

• Unless machines are different, or there is a nondeterministic algorithm.
• This is rare, but happens.

• Efficiency
– E = S/p = tserial/p*tparallel

• Tradeoff between communication and computation.
– Communication takes time, reduces efficiency  
– Minimize communication between processors

• Algorithm choice
• Parallelization scheme
• Communication network

– As p increases, time decreases, but E decreases.
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Amdahl’s Law
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Amdahl’s Law
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Linear speedup is ideal

Max Speedup limited to 1/f as p 
gets large!

So if f=5%, max speedup = 20!

What is “wrong” with this analysis?

Assumes that f is constant as p 
Increases.  Usually as p increases
the problem size increases so f 
Decreases.  (That was close!)
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Example, S3D DNS Solver

• Cartesian domain decomposition
– Only nearest neighbor 

communication.

– Gives ~linear weak scaling since 
communication to computation ratio 
remains fixed

– Communication scales with cube 
surface area, but computation goes 
with cube volume

• Explicit finite difference solver
– 8th order central differences

– 4th order, low storage RK integrator

• Solve reacting, compressible, Navier-
Stokes equations.
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Strong scaling: fix problem size, vary processors

Weak scaling: vary problem size with processors 
to keep a fixed load.

Which is more relevant is problem dependent
(weak scaling will give “nicer” results.

My first MPI Program

• Open MPI
• Compile:

mpicxx myfirstMPI.cc
• Run:

mpirun –np 128 a.out

• Include the mpi library
• MPI_Init: startup MPI, the first function 

called
• MPI_Comm_rank: get rank of processor 

making the call.
– Relative to communicator MPI_COMM_WORLD 

(which just means all the processors).  A 
communicator is a group of processors.

– Processors ordered 0 to N-1.

• MPI_Comm_size: get # of procs, N
• MPI_Finalize: shutdown MPI (last MPI 

call).
• Note syntax.
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This works, but its silly, why?

Just replace ALL if statements with 1 cout statement
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Parallelize the Mandelbrot Set

• Embarassingly parallel, (but 
not as embarassing as some).

• Each pixel is computed 
independently.

• How to divide up the domain?
– Random? (why, too hard)
– Pixel by pixel? (way more pixels 

than processors, so too much 
assignment (scalar) and gathering 
(communication).

– Square grid? (its embarrasing, 
why make it hard—2D)

– Go line-by-line, or chunk the lines.
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Code Structure
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Initialize MPI

Master Collects Data
From Slaves

Slaves Compute and 
Send to Master
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Send and Receive Messages
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MPI_Recv(void*                     message,
int                         count,
MPI_Datatype      datatype,
int                         source,
int                         tag,
MPI_COMM         comm,
MPI_Status          status)

MPI_Send(void*                     message,
int                         count,
MPI_Datatype      datatype,
int                         dest,
int                         tag,
MPI_COMM         comm)

MPI_Recv(&pdata[0][0],
600*nlpp,
MPI_INT,
MPI_ANY_SOURCE,
MPI_ANY_TAG,
MPI_COMM_WORLD,
&status)

MPI_ANY_SOURCE is a built-in variable, but could be just an integer corresponding to 
a given processor.  

Same with MPI_ANY_TAG.

The status variable is declared as MPI_Status status.

MPI_Send(&pdata[0][0],
600*nlpp,
MPI_INT,
0
0
MPI_COMM_WORLD)

Load Balancing
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• Master-slave arrangement.
• One processor coordinates, 

gathers, directs, the others 
compute.

• Cost is not uniform over 
domain
– Some processors will finish 

before others, and waste time.
• How to fix?

– Divide into smaller chunks and 
farm them out as processors 
become available.

– One could even dynamically 
determine workload and adjust 
optimal chunk size on the fly.
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Resources
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üMany online tutorials for MPI and parallel programming.
üPacheco “Parallel Programming with MPI” is a good introductory text


