Nonlinear Equations

- Find roots of $f(x)$. That is, find the value of x so that $f(x)=0$.
- All nonlinear algebraic problems can be written in the form $f(x)=0$. Just move all terms to one side of the equation.
- Numerical methods for nonlinear problems proceed by setting an initial guess for the solution, and iterating to improve the guess until some desired error tolerance is achieved.
- Open and Closed domain methods.
- Here:
	- discuss closed domain methods
	- one equation in one unknown

Bound the Solution

- Bracket the root: Choose two guesses for the solution: $x1$ and x_2 .
- If $f(x_1) \cdot f(x_2) < 0$ then the two guesses bracket the root.
- This implies that the root is between the two guesses.

Procedures

Question: How to get good guesses or bracket the root?

• **Graph it.**

- Visual picture can be very helpful.
- Provides an intial guess of the root.
- Indicates the function behavior, and possible problem areas.
- May not be practical, however.
	- Cost of function evaluation may be excessive.

Procedures

• **Do a simple incremental search.**

- Simply set a small Δx and search the domain for $f(x)=0$.
- Obviously not very practical.

• **Past experience**

- Output of one problem may be a good guess for the input of another problem.
	- This especially true in cases where we do multiple solves, which is quite common.
- Use intuition:
	- species mass fractions should be between 0 and 1.
	- most temperatures in K should be in reasonable ranges.

Procedures

- **Solve a simpler problem** to get a guess for the harder problem.
	- For example, if solving for a nonideal gas, get an initial guess using an ideal gas.
	- Another example, if solving for temperature with a variable heat capacity, find a temperature guess using a constant heat capacity, which results in an easy linear solve for the guess.
	- In combustion, we might solve using a simple 1-step reaction mechanism, instead of a more complex 400 step mechanism.

$$
h = \int_{T_r}^{T} c_p(T) dT
$$

$$
\int_{0}^{T} f(r) dT
$$

$$
h = c_p \cdot (\mathbf{T} - T_r)
$$

Refine

Once you have a bracket refine the root

- Reduce the size of the interval, while maintaining the bracket.
- Two methods:
	- **bisection**,
	- **regula falsi (false position)**
	- These are robust (they work!), but they are not overly fast.

Bisection

- Guess two points that bracket the root: a, b
- Check for $f(a)=0$ or $f(b)=0$
- Bracket tests:
	- $f(a) f(b) < 0$
	- ($f(a) > 0$ and $f(b) < 0$) or (f(a)<0 and f(b)>0)
- Refine: $c = (a+b)/2$
- Select new bracket:
	- if f(a) $f(c) < 0 \rightarrow b=c$
	- \cdot else a = c

Bisection Error

- The error is always bounded by $en≤|b-a|$
- ϵ_{n+1} = $\epsilon_n/2$ → linear convergence
- ϵ_0 ,
- $\epsilon_1 = \epsilon_0/2$,
- $\epsilon_2 = \epsilon_1 / 2 = \epsilon_0 / 4 = \epsilon_0 / 2^2 \implies \epsilon_n = \epsilon_0 / 2^n$.
- Hence:n= $log_2(\epsilon_0/\epsilon_n)$
- **That is, to reduce the error from ϵ⁰ ≤ |a−b| to some desired ϵⁿ requires n = log² (ϵ0/ϵn) iterations.**

Regula Falsi

Rather than bisect the interval to find c, draw an intersecting line between f(a) and f(b) as an approximation to the function.

Regula Falsi

Rather than bisect the interval to find c, draw an intersecting line between f(a) and f(b) as an approximation to the function.

- Solve the root of this linear approximation:
	- that is, where the line intersects the x-axis where $y=f(x)$ is zero.
	- Equation for the line:

$$
f_l(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a).
$$

• Then let $f_1(c)=0$ and solve for c to get:

$$
c=a-f(a)\frac{b-a}{f(b)-f(a)}
$$

To retain the bracket, replace a or b with c as for bisection. $\vert 3 \rangle$

Regula Falsi

- **Robust**
- Usually faster than bisection
- No error bound though.
- May get superlinear convergence
	- Keeping the old versus new function evaluation...
- Consider the following case though (slow):

Convergence

When to stop?

- On the left, the bracket is narrow, but the function is not zero.
- On the right, the function is near zero, but the bracket is not narrow.
- Do both: |b−a|/|c|<∈1 and $|f(c)| < \epsilon$ 2.
- |b−a|<e
	- absolute error
	- works for $x=1$
	- not so good for x=1020
- |b−a|/|c|<ϵ
	- relative error
- $|f(c)| < \epsilon$
	- error in function versus error in root.

