Chemical Engineering 541

Numerical Methods

Introduction

Family

Website

ChE 541 Numerical Methods for Engineers

- Syllabus
- Schedule
- Lecture Notes
- Homework
- Online Resources
- Reference Texts
- Programming Tips
- Personal Information Form

TAs

Notes:

• See BYU Learning Suite for all grades.

Office Hours:

• See syllabus for links to virtual office hour meetings

	М	т	W	Th	F
8:00 am					
9:00 am					
10:00 am					
11:00 am					
12:00 pm					
1:00 pm					
2:00 pm					
3:00 pm		Lignell	Lignell	Lignell	
4:00 pm					
5:00 pm					

All class material will be on the website:

– <u>http://ignite.byu.edu/che541</u>

All scores and homework will be recorded on Learning Suite

Learningsuite.byu.edu

Zoom link

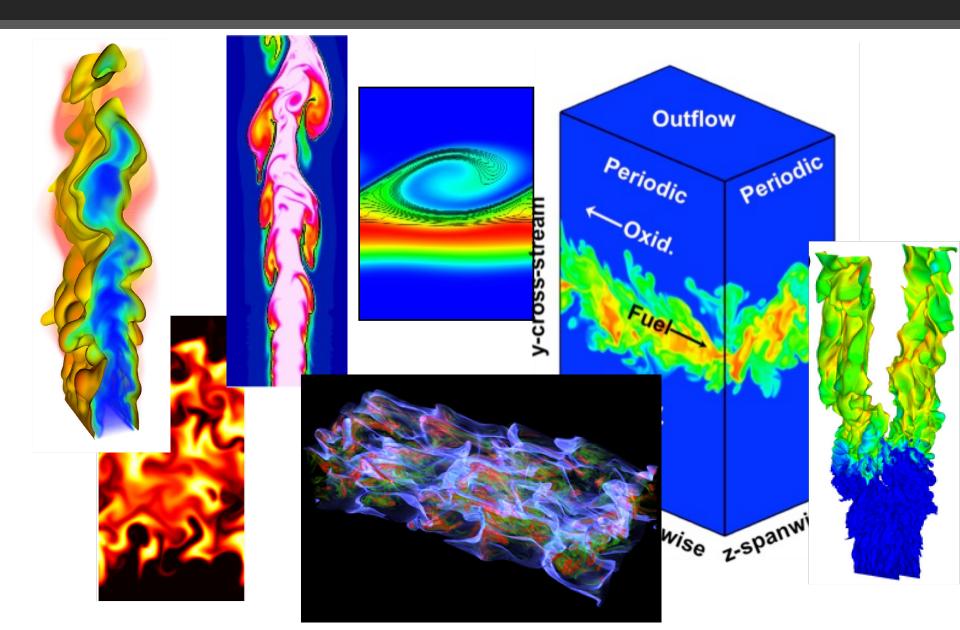
<u>https://byu.zoom.us/my/dlignell</u>

Trends

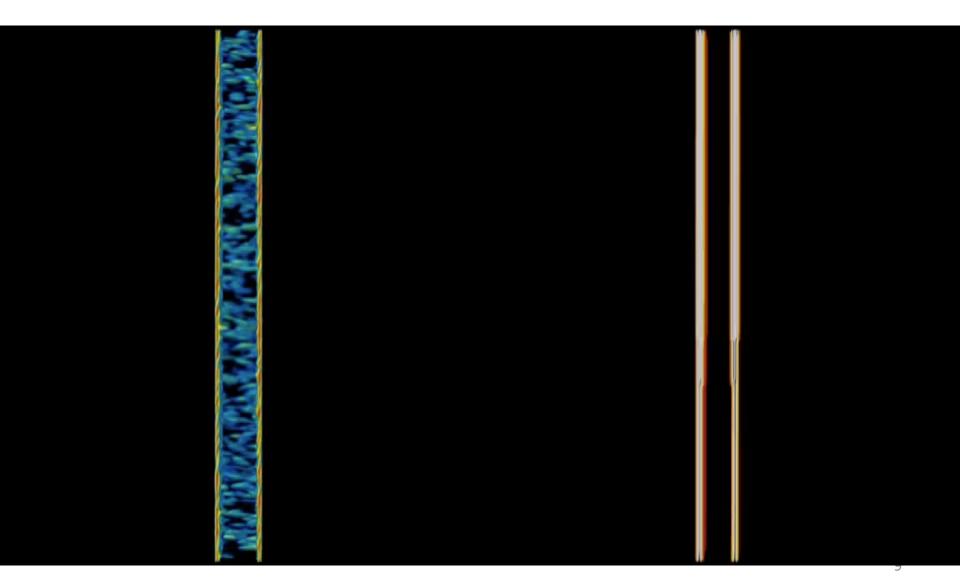
- PDEs \rightarrow ODEs \rightarrow algebraic systems
- Nonlinear systems \rightarrow Linear systems
- One complex equation becomes many "simpler" ones.
- Continuous problems become discrete
 - Solutions at specified locations, or times.
 - Domain split into a grid of points or cells.
- Most realistic problems require numerical solution.
 - This is the rule, not the exception
 - (Yet this topic is still relegated to an elective course ☺)

Example Applications

- Fluid Flow / Heat Transfer
 - − Unsteady PDEs \rightarrow discretize to large system of ODEs
 - Implicit: solve nonlinear systems at each "timestep"
 - Reduce these to iterative linear systems. Iterate to "convergence." Repeat.
- Reaction Engineering
 - Solve (maybe large) system of nonlinear equations (ODE's).
 - PFR, PSR
 - Add spatial depences/diffusion → PDEs
 - Mechanism size reduction:
 - Solve nonlinear and linear systems of equations. Eigenvalue analysis to reduce dimensions.
- Chemical Equilibrium
 - Solve systems of nonlinear equations to minimize Gibbs free energy.
- Pipeline design
 - Solve systems of nonlinear equations.
- Distillation \rightarrow system of nonlinear equations for tray compositions
- h = h(T): given T, find h (easy); given h, find T (harder)
 - Often, h is nicer to work with than T (h is conserved in adiabatic systems, but T is not!)


Direct Solution of Turbulent Combustion

$ \begin{array}{c} \underline{\text{Unknowns:}} \\ \rho, \\ v, \\ e_o, \\ Y_k, \\ P \end{array} $	<u>Auxiliary:</u> Flux relations: Heat, Mass, Momentum. Energy/temperature Mixing relations
	Equations:
continuity:	$rac{\partial ho}{\partial t} = -rac{\partial (ho v_i)}{\partial x_i},$
momentum:	$rac{\partial(ho v_i)}{\partial t} = -rac{\partial(ho v_j v_i)}{\partial x_i} - rac{\partial P}{\partial x_i} + rac{\partial au_{i,j}}{\partial x_i},$
energy:	$rac{\partial(ho e_o)}{\partial t} = -rac{\partial(ho e_o v_i)}{\partial x_i} - rac{\partial(P v_i)}{\partial x_i} + rac{\partial(au_{i,j} \cdot v_j)}{\partial x_i} - rac{\partial q_i}{\partial x_i},$
species:	$rac{\partial(ho Y_k)}{\partial t} = -rac{\partial(ho Y_k v_i)}{\partial x_i} - rac{\partial(j_{k,i})}{\partial x_i} + \omega_k.$
EOS:	$P = \frac{\rho RT}{W},$


Numerical Solution

- Method of lines.
- 8th order finite difference discretization
- 4th order explicit Runge Kutta integration
- Nonlinear solution of enthalpy, temperture relationship.
- Optional implicit reaction integration with explicit diffusion, convection
- Processing of data involves many other numerical techniques (e.g., interpolation, integration).

Selected Results

Simulation Results

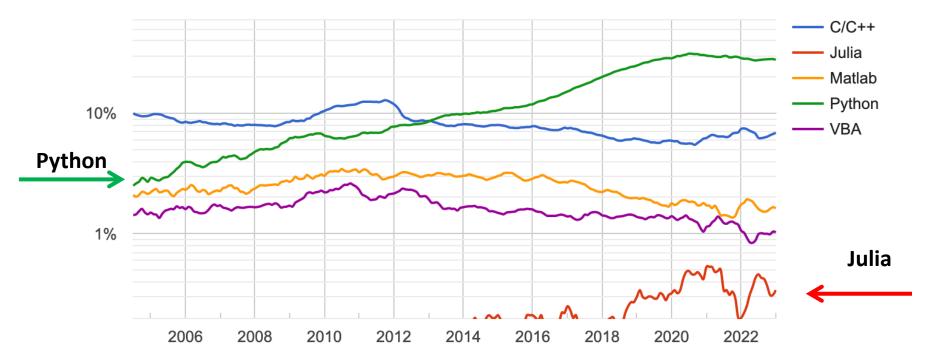
Language Summary

Language	Platform	Student Cost	Professional Cost	Note				
VBA	Windows	Free	N/A (available)	Limited numerical functionality: Excel				
Mathcad	Windows	\$25	\$1,550					
Matlab	All	\$99	\$2150+	Free versions available. Toolboxes needed				
Python	All	Free	Free					
Maple								
Mathemati	са							
etc. see htt	etc. see http://en.wikipedia.org/wiki/Comparison of numerical analysis software							

• Python, Julia, MATLAB for programing

- MATLAB is most advanced for numerics; but slow
- Python is most extensible, and broad: a "real" programing language; but slow
- Julia is built for numerics; fast; new
- Full featured
 - Plotting, symbolic, built-in numerical tools: ODEs, functions, interpolation, plotting, etc.

Language Trends


Worldwide, Jan 2023 compared to a year ago:

Rank	Change	Language	Share	Trend
1		Python	27.93 %	-0.9 %
2		Java	16.78 %	-1.3 %
3		JavaScript	9.63 %	+0.5 %
4	1	C#	6.99 %	-0.3 %
5	¥	C/C++	6.9 %	-0.5 %
6		PHP	5.29 %	-0.8 %
7		R	4.03 %	-0.2 %
8	ተተተ	TypeScript	2.79 %	+1.0 %
9		Swift	2.23 %	+0.3 %
10	$\checkmark \checkmark$	Objective-C	2.2 %	-0.1 %
11	ተተ	Go	1.94 %	+0.7 %
12	ተተተ	Rust	1.9 %	+0.9 %
13	¥	Kotlin	1.81 %	+0.1 %
14	$\downarrow \downarrow \downarrow \downarrow \downarrow$	Matlab	1.63 %	-0.1 %
15	Υ	Ruby	1.13 %	+0.3 %
16	$\mathbf{v}\mathbf{v}$	VBA	1.03 %	-0.0 %

17		Ada	0.89 %	+0.2 %
18	ተተተ	Dart	0.86 %	+0.5 %
19		Scala	0.62 %	+0.0 %
20	$\checkmark \checkmark$	Visual Basic	0.56 %	-0.1 %
21	ተተተ	Lua	0.55 %	+0.2 %
22	$\checkmark \checkmark$	Abap	0.5 %	+0.1 %
23	ተተ	Haskell	0.35 %	+0.1 %
24	<u> </u>	Julia	0.34 %	+0.1 %
25	$\downarrow \downarrow \downarrow \downarrow$	Groovy	0.34 %	-0.0 %
26		Cobol	0.33 %	+0.1 %
27	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	Perl	0.33 %	+0.0 %
28	\checkmark	Delphi/Pascal	0.12 %	-0.1 %

Language Trends

PYPL PopularitY of Programming Language

The PYPL PopularitY of Programming Language Index is created by analyzing how often language tutorials are searched on Google.

Python—Anaconda

https://www.anaconda.com/products/distribution#Downloads

Use Python 3.9 (64 bit)

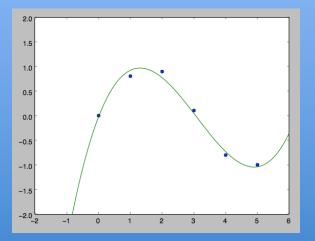
ightarrow C anaconda.com/products/distribution	ution#Downloads	G 🖞 🕁 🔲
	Anaconda Installer	rs
Windows 📲	MacOS 🗯	Linux 👌
Python 3.9	Python 3.9	Python 3.9
64-Bit Graphical Installer (621 MB)	64-Bit Graphical Installer (688 MB)	64-Bit (x86) Installer (737 MB)
	64-Bit Command Line Installer (681 MB)	64-Bit (Power8 and Power9) Installe (360 MB)
	64-Bit (M1) Graphical Installer (484 MB)	64-Bit (AWS Graviton2 / ARM64) Installer (534 MB)
	64-Bit (M1) Command Line Installer	
	(472 MB)	64-bit (Linux on IBM Z & LinuxONE)

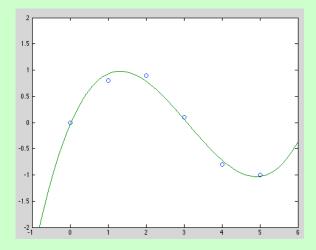
Jupyter Lab

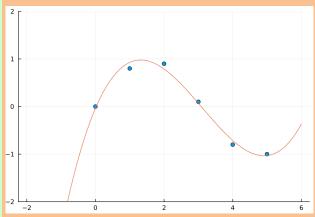
0	File Edit View	Run Kernel Tal	abs Settings Help								
Files	+ 63	<u>†</u> C	Lorenz.ipynb × I Terminal 1 × I Console 1 × I Data.ipynb × ♥ README.md ×								
Ī	♠ > notebooks		\blacksquare + $\%$ \square \blacksquare \blacktriangleright \blacksquare C Code \checkmark	Python 3	0						
-	Name 🔺	Last Modified	In this Notebook we explore the Lorenz system of differential equations:								
Running	📃 Data.ipynb	an hour ago	$\dot{x} = \sigma(y - x)$	$\dot{x} = \sigma(y - x)$							
Rur	📃 Fasta.ipynb	a day ago	$\dot{y} = \rho x - y - xz$								
	📃 Julia.ipynb	a day ago	$\dot{z} = -\beta z + xy$								
qs	Lorenz.ipynb	seconds ago									
man	🖪 R.ipynb	a day ago	Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two	two points,							
Commands	🖽 iris.csv	a day ago	called attractors.								
Ŭ	Iightning.json	In [4]: from lorenz import solve_lorenz									
s	🅏 lorenz.py	3 minutes ago	t, x_t = solve_lorenz(N=10)								
Cell Tools											
Cell			Output View × In Internet in the second se								
Tabs			sigma 10.00 http://www.communication.commu	8.0):							
-			beta 2.67 12 ax = fig.add_axes([0, 0, 1, 1], projection='3d') rho 28.00 13 ax.axis('off')								
			<pre>15 # prepare the axes limits 16 ax.set_xlim((-25, 25)) 17 ax.set_ylim((-35, 35)) 18 ax.set_zlim((5, 55)) 19 20 def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho): 10 """Compute the time-derivative of a Lorenz system.""" 21 """Compute the time-derivative of a Lorenz system.""" 22 x, y, z = x_y_z 23 return [sigma * (y - x), x * (rho - z) - y, x * y - beta 24 25 # Choose random starting points, uniformly distributed from - 26 np.random.seed(1) 27 x0 = -15 + 30 * np.random.random((N, 3)) 28</pre>	* z]							

Julia

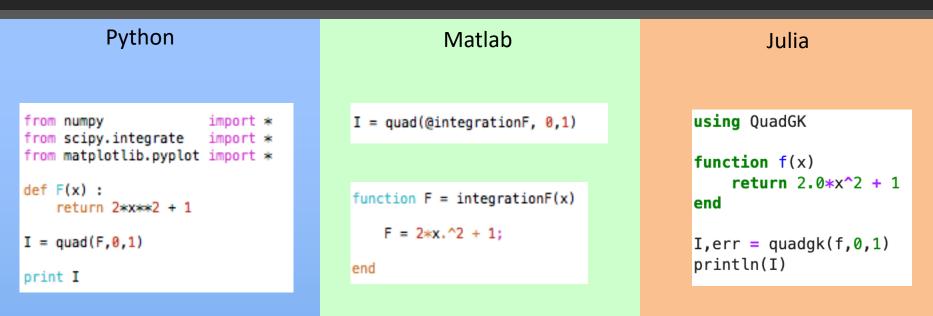
English	The Fast Track t A quick and dirty overview			.0				
	This page's source is located he	J						
	This page's source is located in							
What is?		Collec	tion function	s				
programming language for t Julia has an LLVM-based	JIT compiler that allows it to match the	Apply f t	o all elements ol	fcollection	map(col	coll) or l) do ele	m	
performance of languages : low-level code. Because the	such as C and FORTRAN without the hassle of code is compiled on the fly you can run (bits which is part of the recommended workflow.	coll			# r end		in return	
	rovides multiple dispatch , and is designed for	Filter col	ll for true values	off		f, coll)		
parallelism and distributed of	computation.	List com	prehension		arr = [coll]	T(elem) f	or elem i	n
Julia has a built-in package r	-	\square						
Julia has many built-in math	ematical functions, including special functions complex numbers right out of the box.	Types						
	te code automagically thanks to Lisp-inspired	Typeo						
macros.	to the second group diames to the inspired	Julia has	no classes and t	hus no class	s-specific me	thods.		
Julia was born in 2012.		Types are	e like classes wit	hout metho	ds.			
		Abstract	types can be sul	btyped but i	not instantia	ated.		
Basics		Concrete	e types cannot b	e subtyped.				
		By defau	ilt, struct s are ii	mmutable.				
	answer = 42	Immutable types enhance performance and are thread safe, as they can shared among threads without the need for synchronization.			can b			
Assignment	x, y, z = 1, [1:10;], "A string" x, y = y, x # swap x and y	Objects t	that may be one	of a set of t	ypes are cal	led Union I	types.	
Constant declaration	const DATE_OF_BIRTH = 2012	Type ann	otation	var::Typ	Namo			
End-of-line comment	i = 1 # This is a comment	Type and	locacion		Programmer			
Delimited comment	<pre>#= This is another comment =# x = y = z = 1 # right-to-left</pre>			name	e::String			
Chaining	0 < x < 3 # true	Type dec	laration		th_year::UI e_language:		String	
	5 < x != y < 5 # false function add one(i)			end				
Function definition	return i + 1		type declaration		struct with r		ruct	
	end	Type alia	is istructors		erd = Progr (TypeName)	ammer		
Insert LaTeX symbols	\delta + [Tab]				ogrammer("I	an". 1984	. "Julia")
		Type Inst	tantiation	me = Nei	rd("Ian", 1	984, "Jul	ia")	
Operators					t type Bird Duck <: Bir			
		Subtype	declaration	pono	d::String	u .		
Basic arithmetic	+ - * /			end		013		
Exponentiation	+, -,*,/ 2^3 == 8			struct I x::1	Point{T <: T	keal}		
Division	3/12 == 0.25	Paramet	ric type	y::1				
Inverse division	7\3 == 3/7	raramet	ne cype	end				
Remainder	x % y of rem(x,y)			n -Point	t{Float64}(1 2)		
Negation	!true == false	Union ty	pes		nt, String}			
Equality Inequality	a == b a != b ora ≠ b		type hierarchy		pe(TypeName		ypes(Type	Name)
Less and larger than	a != bora ⊯ b < and >		supertype	Any				
Less than or equal to	<= 0 ſ ≤	All fields			mes(TypeNam	e)		
Greater than or equal to	>= 0 Γ ≥	All field t		TypeName				
Element-wise operation	[1, 2, 3] + [1, 2, 3] == [2, 4, 6]	construc	type is define tors are not ava	ilable and h	ave to be de	efined mai	nually if ne	ed b
Not a number	<pre>[1, 2, 3] .* [1, 2, 3] == [1, 4, 9] isnan(NaN) not(!) NaN == NaN</pre>	An inner	r constructor is to certain (inva	s best used	to check	whether	the para	meter
Ternary operator	a == b ? "Equal" : "Not equal"	conform be violat	to certain (inva ed by accessing	and modify	ing the field	ously, the	se invariai	its ca
Short-circuited AND and OR	a && banda b	is define	d as immutable.	The new key	/word may b	be used to	create an	objec
Object equivalence	a === b		ime type.					

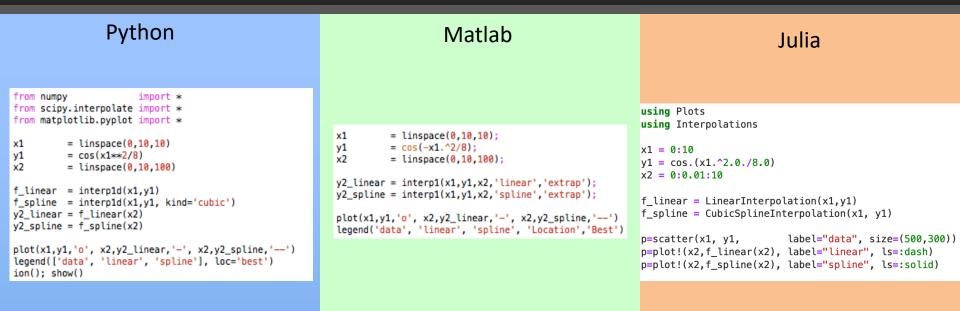

😑 🔍 🗙 Learn Julia	in Y Minutes +									
< > C 👪 📔	learnxinyminutes.co	om/docs/julia/						$\triangleright \bigcirc$	a	Û
Learn X	in Y minı	utes						Share t	his p	age
		atto								
Where X=J	ılia						Selec	t theme:	ight	dar
mere n-o	anu									
Get the code: <u>lea</u>	rojulia il									
<u>ice ine coue.</u>	<u>rijunu.ji</u>									
	omoiconic func	tional langua	no focusod	on tochni	cal computir		anving	the full r		r of
								•		
	acros, first-class	i unctions, an	iu iuw-ievei	i control, ji	1110 15 05 605	y to learn	anu u	se as Pyt	1011.	
-										
his is based o	n julia 1.0.0									
<i># Single</i>	line comment	s start wit	th a hash	(pound)) symbol.					
#= Multil	ine comments	can be wri	itten							
	ting '#=' be									
	the text. Th	ey can also	o be nest	ted.						
=#										
#############	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		#-#-#-#-#-#-#-#	H-H-H-H-H-H-H-	₩-₩-₩-₩-₩-					
	nitive Datat									
	+ <i>++++++++++</i>		-	+++++++++++	+####					
# Everyth	ing in Julia	is an expi	ression.							
-# TThe second			- f							
<pre># There a. typeof(3)</pre>	re several b # =>		or numbe	ers.						
typeof(3.)		Float64								
	+ 1 im) # =>		t64}							
	// 3) # => .									
	the normal i	nfix operat	tors are	availabl	le.					
1 + 1	# => 2									
8 - 1 10 * 2	# => 7 # => 20									
	# => 20 # => 7.0									
10 / 2	# => 5.0	# dividina	integers	alwavs	results i	n a Floa	at64			
	# => 2	-	-	-						
5 \ 35	# => 7.0									
2^2	# => 4	# power, no	ot bitwis	se xor						
12 % 10	# => 2									
# Enforce	nnogodon	with nov	thorag							
	precedence 2 # => 8	wich parent	Lileses							
(1 + 3) *	2 # -> 0									
# Bitwise	Operators									
~2	# => -3 # .	bitwise not	t							

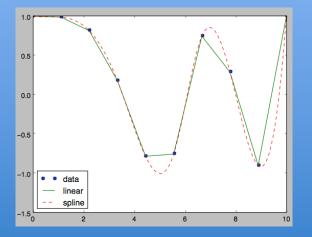

=> 1 # bitwise and

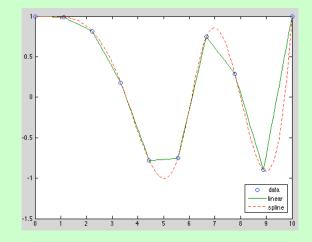

3 & 5

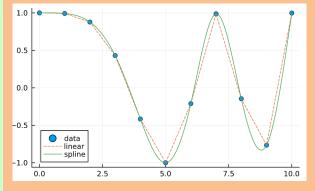
Code: fit polynomial to data


Python	Matlab	Julia
<pre>from numpy import * from scipy.interpolate import * from matplotlib.pyplot import *</pre>		using Plots using Polynomials using CurveFit
<pre>x = array([0, 1, 2, 3, 4, 5]) y = array([0, 0.8, 0.9, 0.1, -0.8, -1]) xp = linspace(-2,6,100)</pre>	<pre>x = [0, 1, 2, 3, 4, 5]; y = [0, 0.8, 0.9, 0.1, -0.8, -1]; xp = linspace(-2,6,100);</pre>	<pre>x = [0, 1, 2, 3, 4, 5] y = [0, 0.8, 0.9, 0.1, -0.8, -1] xp = collect(range(-2, stop=6, length=100))</pre>
p3 = polyfit(x,y,3)	<pre>p3 = polyfit(x,y,3);</pre>	<pre>p3 = poly_fit(x,y,3) fp3 = Polynomial(p3)</pre>
<pre>plot(x,y,'o', xp,polyval(p3,xp),'-') ylim(-2,2) ion(); show()</pre>	<pre>plot(x,y,'o', xp,polyval(p3,xp),'-'); ylim([-2,2]);</pre>	<pre>scatter(x,y) plot!(xp,fp3.(xp), legend=false, ylimits=(-2,2))</pre>

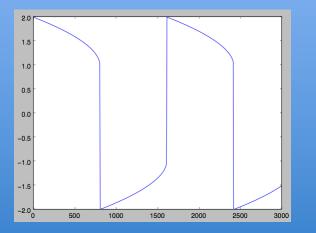



Code: integrate function




2 files (optional)

Code: interpolation


Code: Stiff ODE system

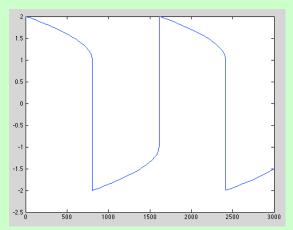
Python

from numpy import * from scipy.integrate import * from matplotlib.pyplot import * def odeF(y,t) : dydt = zeros(2) dydt[0] = y[1] dydt[1] = 1000*(1-y[0]**2)*y[1]-y[0] return dydt t = linspace(0,3000,500)

y0 = array([2, 0]) y = odeint(odeF, y0, t, mxstep=1000)

```
plot(t,y[:,0],'-')
ion(); show()
```

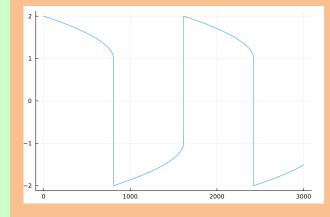

Matlab


```
function ydot = odeF(t,y)
ydot(1,1) = y(2);
ydot(2,1) = 1000*(1-y(1)^2)*y(2)-y(1);
```

end

tend = 3000; y0 = [2 0]; [t y] = ode15s(@odeF, [0 tend], y0);

plot(t,y(:,1),'-');


2 files

Julia

using DifferentialEquations
using Plots
function rhsf!(dy, y, p, t)
 dy[1] = y[2]
 dy[2] = 1000*(1-y[1]^2)*y[2]-y[1]
end
tspan = (0.0, 3000)
y0 = [2 0]
prob = 0DEProblem(rhsf!, y0, tspan)
sol = solve(prob)

y = vcat(sol.u...)
plot(sol.t, y[:,1], legend=false)

Code: system of nonlinear equations

Python

Matlab

from scipy.optimize import * from numpy import *	
#	
def solverF(x) :	function
f1 = x[0]; f2 = x[1]; f3 = x[2]; Q1 = x[3]; Q2 = x[4]; Q3 = x[5];	f1 = f2 = f3 = Q1 = Q2 = Q3 =
<pre>Qt = 0.01333; # Given total volumetric flow rate e1 = 0.00024; # pipe roughness (m) e2 = 0.00012; e3 = 0.0002; L1 = 100; # pipe length (m) L2 = 150; L3 = 80; D1 = 0.05; # pipe diameter (m)</pre>	Qt = e1 = e2 = e3 = L1 = L2 = L3 = D1 = D2 =
D2 = 0.045; D3 = 0.045; mu = 1.002E-3; # viscosity (kg/m*s) rho = 998; # density (kg/m3)	D3 = mu = rho = F(1)
F = zeros((6));	F(2)
<pre>F[0] = f1*L1/D1*rho/2*(4*Q1/pi/D1**2)**2 - \</pre>	F(3) F(4) F(5) F(6) end
<pre>" " Qt = 0.01333; # Given total volumetric flow rate xGuess = array([0.01, 0.01, 0.01, 0.004, 0.004, Qt-0.004-0.004]);</pre>	Qt = 0.01
x = fsolve(solverF, xGuess)	xGuess =
print "[f1, f2, f3, Q1, Q2, Q3] = ", x	x = fsolv

F=solverF(x) x(1): % recover variables so equations easier to read x(2); x(3); x(4): x(5); x(6); 0.01333; % Given total volumetric flow rate % pipe roughness (m) 0.00024; 0.00012; 0.0002; 100; % pipe length (m) 150; 80; % pipe diameter (m) 0.05; 0.045; 0.04; 1.002E-3; % viscosity (kg/m*s) 998; % density (kg/m3) = f1*L1/D1*rho/2*(4*Q1/pi/D1^2)^2 - ... f2*L2/D2*rho/2*(4*Q2/pi/D2^2)^2; % DP_1 - DP_2 = 0 = f1*L1/D1*rho/2*(4*Q1/pi/D1^2)^2 - ... f3*L3/D3*rho/2*(4*Q3/pi/D3^2)^2; % DP_1 - DP_3 = 0 = 1/sqrt(f1)+2*log10(e1/D1/3.7 + ... 2.51/(rho*D1/mu*4*Q1/pi/D1^2/sqrt(f1))); % Colbrook 1 = 1/sqrt(f2)+2*log10(e2/D2/3.7 + ... 2.51/(rho*D2/mu*4*Q2/pi/D2^2/sqrt(f2))); % Colbrook 2 = 1/sqrt(f3)+2*log10(e3/D3/3.7 + ... 2.51/(rho*D3/mu*4*Q3/pi/D3^2/sqrt(f3))); % Colbrook 3 = Q1+Q2+Q3-Qt; % total flow

2 files

t = 0.01333; % Given total volumetric flow rate

xGuess = ([0.01 0.01 0.01 0.004 0.004 Qt-0.004-0.004]); % f1, f2, f3, Q1, Q2, Q3

x = fsolve(@solverF, xGuess)

using NLsolve function solverFunc!(F, x)

runction solverrunc:(r, x)	
f1, f2, f3 = $x[1:3]$	
Q1, Q2, Q3 = x[4:6]	
$(1, 02, 0) = \times [4, 0]$	
e1, e2, e3 = 0.00024, 0.00012, 0.0002	<pre># pipe roughness (m)</pre>
L1, L2, L3 = 100, 150, 80	<pre># pipe length (m)</pre>
D1, D2, D3 = 0.05, 0.045, 0.04	<pre># pipe diameter (m)</pre>
$\mu = 1.002E-3$	<pre># viscosity (kq/m*s)</pre>
$\rho = 998$	# density (kg/m3)
$F[1] = f1*L1/D1*\rho/2*(4*Q1/\pi/D1^2)^2 -$	$\# \Delta P1 - \Delta P2 = 0$
$f_{2*L2/D2*\rho/2*(4*02/\pi/D2^2)^2}$	
$F[2] = f1*L1/D1*\rho/2*(4*Q1/\pi/D1^2)^2 -$	$\# \Lambda P1 - \Lambda P3 = 0$
$f_{3*L3/D3*p/2*(4*Q3/\pi/D3^2)^2}$	
$F[3] = 1/\sqrt{f1} + 2*\log 10(e1/D1/3.7 +$	
2.51/(p*D1/μ*4*Q1/π/D1^2/√f1)) #	Colbrook 1
F[4] = 1//f2 + 2*log10(e2/D2/3.7 +	
2.51/(p*D2/μ*4*Q2/π/D2^2/√f2)) #	Colbrook 1
$F[5] = 1/\sqrt{f3} + 2*\log 10(e3/D3/3.7 +$	
2.51/(p*D3/μ*4*Q3/π/D3^2/√f3)) #	Colbrook 1
F[6] = Q1+Q2+Q3-Qt	COLDIOOR 1
end	
Qt = 0.01333 # total volume	etric flow rate
xGuess = [0.01, 0.01, 0.01, 0.004, 0.004, 0	t-0.004-0.0041

x = nlsolve(solverFunc!, xGuess).zero
println("f1, f2, f3, Q1, Q2, Q3 = \n", x)

Flow through 3 parallel pipes given total flow, pipe props

Code: 2D unsteady heat equation

Python

# 2-D unsteady heat equation					
# df/dt = alpha*d2f/dx2 + d2f/dy2 + S					
# Forward Euler, central dif	'ference.				
# Finite difference					
# Points on boundaries, solv	ve interior points.				
# BC = 0; IC = 0					
from numpy im	port *				
from matplotlib.pyplot im	port *				
from mpl toolkits.mplot3d im					
	port *				
Ld = 1.0	# domain length				
nTauRun = 0.5	# # of diffusion timescales to run				
nxy = 22	# # of uniform grid points in x, y				
alpha = 1	# thermal diffusivity				
cfl = 0.5	# time step factor				
tau = Ld **2 /alpha	<pre># domain diffusion timescale</pre>				
tend = nTauRun*tau	# run time				
dxy = Ld/(nxy-1)	# grid spacing				
dt = dxy**2/alpha/4*cfl	# time step size				
<pre>nt = ceil(tend/dt)</pre>	# number of time steps				
dt = tend/nt	# clean it up				
np = ceil(1/cfl)*10	# how often to plot?				
<pre>f = zeros((nt,nxy,nxy))</pre>	# initialize the solution				
S = ones((nt,nxy,nxy))	# set the source term				
	i,nxy),linspace(0,Ld,nxy)) # for plotting				
i = arange(1,nxy-1)					
j = i					
<pre>for it in arange(1,nt) ;</pre>					
for it in arange(i,nt) :					
f[it][ix (i,j)] = f[it-1][ix (i,j)] \				
	<pre>wdt/dxy**2)*(f[it-1][ix_(i-1,j)]-2*f[it-1][ix_(i,j)]+f[it-1][ix_(i+1,j)])</pre>				
	<pre>wdt/dxy**2)*(f[it-1][ix_(i,j-1)]-2*f[it-1][ix_(i,j)]+f[it-1][ix_(i,j+1)])</pre>				
	[[ix_(i,j)]				

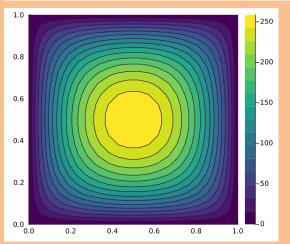
if(it%np==0) : # plot clf()

contourf(X,Y,f[it,:,:],20) ion(); show() aa = raw_input()

Matlab

% df % Fo % Fi % Po	/dt = rward nite ()ints (teady heat equation alpha*d2f/dx2 + d2f/dy Euler, central differe difference on boundaries, solve ir IC = 0	ence.
nxy alph	iRun : ia :	= 0.5; = 22; = 1;	<pre>% domain length % # of diffusion timescales to run % # of uniform grid points in x, y % thermal diffusivity % time step factor</pre>
tenc dxy dt nt dt np f =	I = nTa = Ld, = dxy = ce: = ter = ce: zeros	<pre>auRun*tau; (/nxy-1); y^2/alpha/4*cfl; il(tend/dt); hd/nt; il(1/cfl)*10; (nt,nxy,nxy);</pre>	<pre>% domain diffusion timescale % run time % grid spacing % time step size % number of time steps % clean it up % how often to plot? % initialize the solution % set the source term</pre>
i = j =	2:nxy i;	-1;	<pre>hxy),linspace(0,Ld,nxy)); % for plotting</pre>
	it=2::	i,j) = f(it-1,i,j) + (alpha*dt/dxy'	<pre>>2)*(f(it-1,i-1,j)-2*f(it-1,i,j)+f(it-1,i+1,j)) 2)*(f(it-1,i,j-1)-2*f(it-1,i,j)+f(it-1,i,j+1))</pre>
		d(it,np)==0) = reshape(f(it,:,:),n>	% plot <y,nxy);< td=""></y,nxy);<>

Z = reshape(f(it,:,:),nxy,nxy); contourf(X,Y,Z,20); pause(0.1); end


end

Finite difference, Euler integration

Julia

using Plots
Ld = 1.0 nTauRun = 0.5 nxy = 22 alpha = 1 cfl = 0.5
<pre>tau = Ld^2/alpha tend = nTauRum+tau dxy = Ld/(nxy-1) dt = dxy^2/alpha/4*cfl nt = ceil(Int,tend/dt) dt = tend/nt np = ceil(Int,1/cfl)*10</pre>
F = zeros(Float64, nt,nxy,nxy) S = ones(Float64, nt,nxy,nxy)
<pre>x = range(0,stop=Ld, length=nxy) y = range(0,stop=Ld, length=nxy) i = 2:nxy-1 j=i</pre>
a = Animation()
<pre>for it in 2:nt @. F[it,i,j] = F[it-1,i,j] + (alphawdt/dxy*2)*(F[it-1,i-1,j]-2*F[it-1,i,j]+F[it-1,i+1,j]). (alphawdt/dxy*2)*(F[it-1,i,j-1-2*F[it-1,i,j]+F[it-1,i,j]). S[it-1,i,]</pre>
<pre>if it%np==0 p = contour(x,y,F[it,:,:], fill=true,</pre>
end end

p = contour!(x,y,F[end,:,:], fill=true, c=:viridis, aspect_ratio=1.0, xlimits=(0,1))

