
1

Chemical Engineering 541

Numerical Methods

Introduction

Family

2

Website

• All class material will be on the
website:
– http://ignite.byu.edu/che541

• All scores and homework will
be recorded on Learning Suite
– Learningsuite.byu.edu

• Zoom link
– https://byu.zoom.us/my/dlignell

http://ignite.byu.edu/che541
https://byu.zoom.us/my/dlignell

Trends
• PDEs à ODEs à algebraic systems
• Nonlinear systems à Linear systems
• One complex equation becomes many “simpler”

ones.
• Continuous problems become discrete

– Solutions at specified locations, or times.
• Domain split into a grid of points or cells.

• Most realistic problems require numerical solution.
– This is the rule, not the exception

• (Yet this topic is still relegated to an elective course L)

4

Example Applications
• Fluid Flow / Heat Transfer

– Unsteady PDEs à discretize to large system of ODEs
– Implicit: solve nonlinear systems at each “timestep”

• Reduce these to iterative linear systems. Iterate to “convergence.” Repeat.

• Reaction Engineering
– Solve (maybe large) system of nonlinear equations (ODE’s).
– PFR, PSR
– Add spatial depences/diffusion à PDEs
– Mechanism size reduction:

• Solve nonlinear and linear systems of equations. Eigenvalue analysis to reduce dimensions.

• Chemical Equilibrium
– Solve systems of nonlinear equations to minimize Gibbs free energy.

• Pipeline design
– Solve systems of nonlinear equations.

• Distillation à system of nonlinear equations for tray compositions
• h = h(T): given T, find h (easy); given h, find T (harder)

– Often, h is nicer to work with than T (h is conserved in adiabatic systems, but T is not!)

5

6

Direct Solution of Turbulent Combustion

Unknowns:
r,
v,
eo,
Yk,
P

Equations:

Auxiliary:
Flux relations:

Heat, Mass,
Momentum.

Energy/temperature
Mixing relations

EOS:

7

Numerical Solution

• Method of lines.
• 8th order finite difference discretization
• 4th order explicit Runge Kutta integration
• Nonlinear solution of enthalpy, temperture

relationship.
• Optional implicit reaction integration with explicit

diffusion, convection
• Processing of data involves many other numerical

techniques (e.g., interpolation, integration).

8

Selected Results

Simulation Results

9

Language Summary

• Python, Julia, MATLAB for programing
– MATLAB is most advanced for numerics; but slow
– Python is most extensible, and broad: a “real” programing language; but slow
– Julia is built for numerics; fast; new

• Full featured
– Plotting, symbolic, built-in numerical tools: ODEs, functions, interpolation, plotting, etc.

Language Platform Student0Cost Professional0Cost Note

VBA Windows Free N/A0(available) Limited0numerical0functionality:0Excel

Mathcad Windows $25 $1,550

Matlab All $99 $2150+ Free0versions0available.00Toolboxes0needed

Python All Free Free

Maple

Mathematica

etc.0see0http://en.wikipedia.org/wiki/Comparison_of_numerical_analysis_software

Language Trends

Language Trends

Python

Julia

Python—Anaconda

Use Python 3.9 (64 bit)

https://www.anaconda.com/products/distribution#Downloads

Jupyter Lab

Julia

Python

Code: fit polynomial to data
Python Matlab Julia

Python

Code: integrate function
Python Matlab

2 files (optional)

Julia

Python

Code: interpolation
Python Matlab

2 files

Julia

Python

Code: Stiff ODE system
Python Matlab

2 files

Julia

Python

Code: system of nonlinear equations
Python Matlab

2 files

Flow through 3 parallel pipes given total flow, pipe props

Python

Code: 2D unsteady heat equation
Python Matlab Julia

Finite difference, Euler integration

