

Ov	erall
 Errors accuracy and roundoff Linear Algebra Linear Systems Direct Iterative Nonlinear Equations 1-D Multi-D Taylor Series ODEs: IVP ODEs: IVP 	 S PDEs Convection Diffusion Hyperbolic Numerical Integration Trapezoid, Simpsons Adaptive quadrature Gauss quadrature Monte Carlo Interpolation Curve fitting Polynomial Least squares Spectral methods Homotopy continuation

Themes
 Methods and implementation PDEs to ODEs or algebraic equations ODEs to algebraic equations Linear, nonlinear, systems Taylor series FD equations, consistency PDE→FDE→MDE Stability analysis, Fourier analysis Eigenvalue decompositions Separate equations, analysis, especially for systems

Homework Summary

- HW 1
 - Machine precision, roundoff error.
 - Floating point analysis, condition number
 - LU decomposition / Thomas Alg.
- HW 2
 - Iterative methods: Jacobi, GS, SOR, optimal omega
 - Nonlinear Root finding
- HW 3
 - Nonlinear systems,
 - FD derivatives.
- HW 4

BYU

- IVP, EE, IE, MM, Euler stability
- RK4 convergence

- HW 5
 - BVP: cylidrical heat conduction, Neumann BCs
 - Shooting, Relaxation methods
- HW 6
 - Parabolic PDE: flamelet equationFTCS, BTCS, CN
 - гюз, ыс
- HW 7
 - Lid driven cavity (vorticity-streamfunction):
 F.D., F.V. equations
- Nonlinear
 - ADI method
- HW 8
 - 1D linear wave equation
 - Upwind, 2nd order upwind, Lax Wendroff
- HW 9
 - Integration: Trapazoid, Simpson
 - Curve Fit
 - Spline
- Hyperbolic Equations Methods: • Know: - FTCS - Consistency – Lax - Order in time and space Lax Wendroff - Stability - MacCormack - Stencils - Upwind - 2nd order upwind - Characteristics - MDE - BTCS · Lax Wentroff used this to fix the Lax method BYU

Hyperbolic Equations

Euler Equations

- An example of a hyperbolic system
- Inviscid fluid flow: solve mass, momentum, energy, for ideal gases.
- Converted energy equation to pressure eqn.
- Wrote as a matrix system
- Decoupled using an eigenvalue decomposition to show form as 1-D wave equations
- Eigenvalues were wave speeds.
- Flux Limiters
 - These are nonlinear methods to suppress oscillations and retain second order accuracy.
 - Write fluxes as the sum of two fluxes (nominally a low order that's good near sharp regions, and a high order thats good in smooth regions).
 - The flux limiter function switches between the two fluxes based on ratio of successive slopes (steepness of profile).
 - Many methods depending on the form of the flux limiter.

7

BYU

	Numerical Integration	8
•	 Direct fit polynomials Fit a polynomial through data and integrate it Limited to few points/low order else get poor results due to polynomial oscillation Trapazoid rule Fit lines through adjacent points and sum the area of the resulting trapazoid. Adjacent trapazoids double count points → build into the single summation equation. Second order globally Simpson's rule Fit parabola through groups of three points Need odd number of points How to fit the parabola? 	
AUNG LANDER	 Fourth order globally (error in notes: says its 3rd order). Boundary issues 	

Integration

9

- Adaptive Quadrature
 - Recursive routine for trapazoid rule
 - Be familiar with this, it was not complicated to implement
 - Issues...
- Monte Carlo Integration
 - Introduction
 - Converges as $N^{1/2}$ (that is, error is proportional to $N^{1/2}$)
 - Integrate area in circle by ratio of points
 - Examples of why (weird domains, multi-dimensional, fiercly expensive).
 - Sample uniform random points on [a,b]?
 - Sample uniformly from a distribution (like a Gaussian)?
 - Sample uniformly under a curve?

9

BYU

Integration	10
 Monte Carlo Integration Sample from nonuniform distributions Integrate and Invert Rejection method Poisson Process example 	
BYU	

Interpolation
 Direct polynomial fit to points M points, M-1 degree polynomial Limit to 5-6th degree Don't extrapolate Limitations? Lagrange form Linear interpolation Cubic Splines Allows smooth f, f', f" using low order polynomial (cubic). Domain is coupled to solve though Constraints to get number of equations and points. Simpler version solves for f" at each point, then has the cubic in each interval in terms of f".

	Spectral Methods	14
•	Solution represented as sum of coefficients times basis functions. – Similarly used in finite element methods Periodic domains – Similar variations allow non-periodic domains (e.g., Chebychev polynomials) FFT, IFFT Spectral vs Pseudo-Spectral method Treats derivatives exactly Exponential convergence with # of points	
TOUNG (A), INSTITUTION OF TOURSE OF		

