Chemical Engineering 541

Numerical Methods

Exam 2 Review

Exam 2 Review

- Classes 17-29
- Homework 5-7
- ODEs
 - Boundary Value Problems—Shooting
 - Boundary Value Problems—Relaxation
- PDEs
 - Classification
 - Parabolic PDEs
 - Elliptic PDEs
 - Finite Volume Method
 - Advection/Diffusion

ODEs, BVP, Shooting

- BVP
 - Characteristics
 - Differences between IVP, BVP
 - Recognize linear vs nonlinear.
- BCs
 - Three types: identify each by name, by physics, example
- Two methods: shooting and relaxation
- Shooting method
 - Reduce 2nd order (or higher) ODE to system of 1st order ODEs
 - March from one end to the other
 - − Don't know all BC's at one end \rightarrow Guess.
 - Shoot to the end
 - Update guess at starting point based on BC values at end point.
 - Formulate as a nonlinear equation solve \rightarrow Newton, secant, etc.

Relaxation Methods

- Shooting vs Relaxation
 - Advantages and disadvantages
- Relaxation
 - Discretize domain into a grid of points
 - Apply finite difference approximations to derivatives in ODE in terms of grid points
 - ODE is now a coupled system of algebraic equations
 - Solve this linear or nonlinear problem using any standard method
 - Direct solution of a linear system. Depends on number of points in the FDE. Tridiagonal can be convenient and fast.
 - Iterative solution.
 - Nonlinear \rightarrow direct Newton's method, or linearize and iterate.
 - Formulation of the linear system including boundary conditions

BVP Relaxation Methods

- BCs
 - Dirichlet are straightforward, done before
 - Neumann and Robin conditions.
 - Discretize the boundary condition in all cases.
 - Ghost Cell method:
 - Include Boundary point in unknowns.
 - Apply BC to eliminate the Ghost Cell that arises.
 - Method 2:
 - Don't include the boundary point in unknowns, but boundary point arises in equation for point 1.
 - One-sided difference on boundary condition to eliminate the boundary point from equation for points next to boundary.
 - Advantages and disadvantages of each method
- Nonlinear Relaxation Methods
 - Iterate: factor nonlinear terms into a linear component, and a lagged component. Example: $(y^2)^{n+1} \rightarrow y^n y^{n+1}$. Can also linearize the term with a Taylor series.
 - Newton's method (fast convergence, but requires a linear system solve at each step).
- Nonuniform grids
 - Arbitrary grid
 - Analytic stretched grid.

PDEs

- Approach:
 - − Nonlinear \rightarrow linear with iteration
 - ODEs \rightarrow algebraic systems (linear/nonlinear)
 - − PDEs \rightarrow ODEs and/or algebraic systems
- Examples of each
- Classification
 - Elliptic, Parabolic, Hyperbolic
 - Domains of dependence
 - Qualitative/physical sense for each type.
 - Characteristic Curves
 - Parabolic:
 - Conceptually: has an unsteady (d/dt) term and a diffusive (d²/dx² second derivative) term. A first derivative (advective) term is optional.
 - Elliptic:
 - Conceptually: like parabolic above, but steady state (no d/dt term).
 - Hyperbolic:
 - Conceptually: has a d/dt term and a d/dx term, but no d^2/dx^2 diffusive term.

PDEs Parabolic

- FTCS
- BTCS
- Crank Nicholson
- Omega Method is a generalization (ω on the n+1 term)
- Advantages/disadvantages for FTCS, BTCS, CN
 - What is the order and stability of each.
- Method of Lines
 - How to get and setup. How it differs from others
- Coupling in space of the different methods and how this affects a numerical method

Stability

- Stability Analysis
 - Applied to FTCS, but works for others too.
 - What do we mean by stability?
 - How stability of ODE, relates to that of the FDE.
 - Von Neumann Analysis (basic ideas only)
- Limitation on d = $\alpha \Delta t / \Delta x^2$.
 - Physical interpretations of constraints:
 - d is a ratio of timescales. Don't step more than some factor of the intrinsic physical process timescale

Multi-D

- Solution of Multi-D parabolic equation
 - 2D grid in space
 - Discretize both directions
 - Stencil: depends on finite difference approx, but a 5 point stencil is common
- Explicit in time
 - Straightforward: solve each gridpoint in terms of itself and its (four) neighbors at the previous time.
- Implicit in time
 - Pentadiagonal matrix
 - How to set it up, BC issues, ordering of gridpoints

ADI

• ADI

- Alternating Direction Implicit
- Use with Thomas Algorithm (TDMA)
- Works for Parabolic or Elliptic problems:
 - Elliptic are more obviously applicable as they are naturally "implicit"
- Approach 1: matrix specific:
 - Order grid in one direction, move off-diags to RHS, then iterate, changing grid order each time.
 - Solves the whole grid: (nx*ny) x (nx*ny) system.
 - Hoffman's equation implies this method.
- Approach 2: grid specific:
 - Sweep rows of grid, solving 1-D tridiagonal system for each row, then do the same for each column.
 - Solves an (nx) x (nx) system for each row, then an (ny) x (ny) system for each column, rather than whole grid of points as in Approach 1.
- For unsteady problems, don't have to iterate to convergence.

Finite Volume Method

- Solve integral rather than differential equation on a grid of finite volumes rather than a grid of points.
- Three equivalent approaches
 - Apply standard: Accumulation = In Out + Generation
 - Integrate the PDE over the CV
 - Start from scratch and apply the Reynolds Transport Theorem equation to each CV
- Properties are assumed constant in a CV, and along a surface (CS)
- Uses Gauss Divergence Theorem. $\int_{V} \nabla \cdot \vec{v} dV = \int_{A} \vec{v} \cdot \vec{n} dA$
- Face properties evaluated using averages (interpolation), or by using finite differences (for derivatives), or both.
- Usually flux-based, and conservative by construction. Often write directly in terms of fluxes, without doing full substitution.
- More naturally accommodates heterogeneous materials.

Formulation can be similar to finite difference method for special cases.

Finite Volume Issues

- Interface conductivity (or viscosity, or diffusivity).
 - Harmonic mean not arithmetic mean.
 - Find the face conductivity by equating heat fluxes across cell (q⁺=q⁻ and q⁺=q gave two equations in k_{face} and T_{face}).
 - Linear interpolation is inferior.
- Grid decoupling for first derivatives
 - Pressure gradient in N.S. equations, or convective terms in general
 - Allows checkerboarding
 - Use a staggered grid for velocities
 - Eliminates checkerboarding, and is convenient for evaluating fluxes at cell faces (which is where the velocities are located).

Advection/Diffusion

- Two parameters: $c=u\Delta t/\Delta x$, $d=\Gamma\Delta t/\Delta x^2$. (Timescale ratios)
- FTCS
 - Conditionally stable, consistent, O(Δt), O(Δx^2)
 - d < 1/2, and $c^2 < 2d$
- BTCS
 - Unconditionally stable, consistent, O(Δt), O(Δx^2)
- Central difference "bad" on advective terms
 - wrote in terms of Pe, unphysical increase without a source term
- Upwinding solves this, but lower order, and diffusive.

Advection/Diffusion

- Exponential scheme
 - Instead of central differences or upwinding, we incorporate the exact solution of the SS, 1-D problem with no source for the discretization
 - Use exact solution to evaluate the flux at a face in terms of its neighbors → coefficients of neighbors as before, but different form.
 - Simplify by approximating the exponentials using polynomials or piecewise linear functions.
 - Write in terms of Peclet number Pe (analogous to Re for scalars).

