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Chemical Engineering 541

Numerical Methods

Exam 2 Review
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Exam 2 Review

• Classes 17-29
• Homework 5-7
• ODEs

– Boundary Value Problems—Shooting
– Boundary Value Problems—Relaxation

• PDEs
– Classification
– Parabolic PDEs
– Elliptic PDEs
– Finite Volume Method
– Advection/Diffusion



ODEs, BVP, Shooting

• BVP
– Characteristics
– Differences between IVP, BVP
– Recognize linear vs nonlinear.

• BCs
– Three types: identify each by name, by physics, example

• Two methods: shooting and relaxation
• Shooting method

– Reduce 2nd order (or higher) ODE to system of 1st order ODEs
– March from one end to the other
– Don’t know all BC’s at one end à Guess.
– Shoot to the end
– Update guess at starting point based on BC values at end point.
– Formulate as a nonlinear equation solve à Newton, secant, etc. 
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Relaxation Methods

• Shooting vs Relaxation
– Advantages and disadvantages

• Relaxation
– Discretize domain into a grid of points
– Apply finite difference approximations to derivatives in ODE in 

terms of grid points
– ODE is now a coupled system of algebraic equations

• Solve this linear or nonlinear problem using any standard method
• Direct solution of a linear system.  Depends on number of points in the FDE.  

Tridiagonal can be convenient and fast.
• Iterative solution.
• Nonlinear à direct Newton’s method, or linearize and iterate.

– Formulation of the linear system including boundary conditions
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BVP Relaxation Methods

• BCs
– Dirichlet are straightforward, done before
– Neumann and Robin conditions.
– Discretize the boundary condition in all cases.
– Ghost Cell method:

• Include Boundary point in unknowns.
• Apply BC to eliminate the Ghost Cell that arises.

– Method 2:
• Don’t include the boundary point in unknowns, but boundary point arises in equation for point 1.
• One-sided difference on boundary condition to eliminate the boundary point from equation for points next to 

boundary.

– Advantages and disadvantages of each method

• Nonlinear Relaxation Methods
– Iterate: factor nonlinear terms into a linear component, and  a lagged component. 

Example: (y2)n+1 à ynyn+1. Can also linearize the term with a Taylor series.
– Newton’s method (fast convergence, but requires a linear system solve at each step).

• Nonuniform grids
– Arbitrary grid
– Analytic stretched grid.
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PDEs
• Approach: 

– Nonlinear à linear with iteration
– ODEs à algebraic systems (linear/nonlinear)
– PDEs à ODEs and/or algebraic systems

• Examples of each
• Classification

– Elliptic, Parabolic, Hyperbolic
• Domains of dependence
• Qualitative/physical sense for each type.
• Characteristic Curves

– Parabolic: 
• Conceptually: has an unsteady (d/dt) term and a diffusive (d2/dx2 second 

derivative) term. A first derivative (advective) term is optional.

– Elliptic:
• Conceptually: like parabolic above, but steady state (no d/dt term).

– Hyperbolic: 
• Conceptually: has a d/dt term and a d/dx term, but no d2/dx2 diffusive term.
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PDEs Parabolic

• FTCS
• BTCS
• Crank Nicholson
• Omega Method is a generalization (ω on the n+1 term)
• Advantages/disadvantages for FTCS, BTCS, CN

– What is the order and stability of each.
• Method of Lines

– How to get and setup.  How it differs from others
• Coupling in space of the different methods and how this 

affects a numerical method
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Stability

• Stability Analysis
– Applied to FTCS, but works for others too.
– What do we mean by stability?

• How stability of ODE, relates to that of the FDE.
– Von Neumann Analysis (basic ideas only)

• Limitation on d = aDt/Dx2.
– Physical interpretations of constraints:

• d is a ratio of timescales. Don’t step more than some factor of 
the intrinsic physical process timescale
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Multi-D

• Solution of Multi-D parabolic equation
– 2D grid in space
– Discretize both directions
– Stencil: depends on finite difference approx, but a 5 

point stencil is common
• Explicit in time

– Straightforward: solve each gridpoint in terms of itself 
and its (four) neighbors at the previous time.

• Implicit in time
– Pentadiagonal matrix
– How to set it up, BC issues, ordering of gridpoints 
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ADI

• ADI 
– Alternating Direction Implicit
– Use with Thomas Algorithm (TDMA)
– Works for Parabolic or Elliptic problems:

• Elliptic are more obviously applicable as they are naturally “implicit”
– Approach 1: matrix specific:

• Order grid in one direction, move off-diags to RHS, then iterate, changing grid 
order each time. 

• Solves the whole grid: (nx*ny) x (nx*ny) system.
• Hoffman’s equation implies this method.

– Approach 2:  grid specific:
• Sweep rows of grid, solving 1-D tridiagonal system for each row, then do the 

same for each column.
• Solves an (nx) x (nx) system for each row, then an (ny) x (ny) system for each 

column, rather than whole grid of points as in Approach 1.

– For unsteady problems, don’t have to iterate to convergence.

10



Finite Volume Method

• Solve integral rather than differential equation on a grid of finite 
volumes rather than a grid of points.

• Three equivalent approaches
– Apply standard: Accumulation = In – Out + Generation
– Integrate the PDE over the CV
– Start from scratch and apply the Reynolds Transport Theorem equation to 

each CV
• Properties are assumed constant in a CV, and along a surface (CS)
• Uses Gauss Divergence Theorem.
• Face properties evaluated using averages (interpolation), or by using 

finite differences (for derivatives), or both.
• Usually flux-based, and conservative by construction. Often write 

directly in terms of fluxes, without doing full substitution.
• More naturally accommodates heterogeneous materials.
• Formulation can be similar to finite difference method for special cases.
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Finite Volume Issues

• Interface conductivity (or viscosity, or diffusivity).
– Harmonic mean not arithmetic mean.
– Find the face conductivity by equating heat fluxes across cell 

(q+=q- and q+=q gave two equations in kface and Tface).
– Linear interpolation is inferior.

• Grid decoupling for first derivatives
– Pressure gradient in N.S. equations, or convective terms in 

general
– Allows checkerboarding
– Use a staggered grid for velocities

• Eliminates checkerboarding, and is convenient for evaluating fluxes 
at cell faces (which is where the velocities are located).
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Advection/Diffusion

• Two parameters: c=uDt/Dx, d=ΓDt/Dx2. (Timescale ratios)
• FTCS

– Conditionally stable, consistent, O(Dt), O(Dx2)
– d<1/2, and c2 < 2d

• BTCS
– Unconditionally stable, consistent, O(Dt), O(Dx2)

• Central difference “bad” on advective terms 
– wrote in terms of Pe, unphysical increase without a source term

• Upwinding solves this, but lower order, and diffusive.
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Advection/Diffusion

• Exponential scheme
– Instead of central differences or upwinding, we 

incorporate the exact solution of the SS, 1-D problem 
with no source for the discretization

– Use exact solution to evaluate the flux at a face in 
terms of its neighbors à coefficients of neighbors as 
before, but different form.

• Simplify by approximating the exponentials using 
polynomials or piecewise linear functions.

• Write in terms of Peclet number Pe (analogous to Re for 
scalars).
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