Chemical Engineering 541

Numerical Methods

Exam 2 Review

Exam 2 Review

- Classes 17-29
- Homework 5-7
- ODEs
- Boundary Value Problems-Shooting
- Boundary Value Problems—Relaxation
- PDEs
- Classification
- Parabolic PDEs
- Elliptic PDEs
- Finite Volume Method
- Advection/Diffusion

ODEs, BVP, Shooting

- BVP
- Characteristics
- Differences between IVP, BVP
- Recognize linear vs nonlinear.
- BCs
- Three types: identify each by name, by physics, example
- Two methods: shooting and relaxation
- Shooting method
- Reduce $2^{\text {nd }}$ order (or higher) ODE to system of $1^{\text {st }}$ order ODEs
- March from one end to the other
- Don't know all BC's at one end \rightarrow Guess.
- Shoot to the end
- Update guess at starting point based on BC values at end point.
- Formulate as a nonlinear equation solve \rightarrow Newton, secant, etc.

Relaxation Methods

- Shooting vs Relaxation
- Advantages and disadvantages
- Relaxation
- Discretize domain into a grid of points
- Apply finite difference approximations to derivatives in ODE in terms of grid points
- ODE is now a coupled system of algebraic equations
- Solve this linear or nonlinear problem using any standard method
- Direct solution of a linear system. Depends on number of points in the FDE. Tridiagonal can be convenient and fast.
- Iterative solution.
- Nonlinear \rightarrow direct Newton's method, or linearize and iterate.
- Formulation of the linear system including boundary conditions

BVP Relaxation Methods

- BCs
- Dirichlet are straightforward, done before
- Neumann and Robin conditions.
- Discretize the boundary condition in all cases.
- Ghost Cell method:
- Include Boundary point in unknowns.
- Apply $B C$ to eliminate the Ghost Cell that arises.
- Method 2:
- Don't include the boundary point in unknowns, but boundary point arises in equation for point 1.
- One-sided difference on boundary condition to eliminate the boundary point from equation for points next to boundary.
- Advantages and disadvantages of each method
- Nonlinear Relaxation Methods
- Iterate: factor nonlinear terms into a linear component, and a lagged component. Example: $\left(y^{2}\right)^{n+1} \rightarrow y^{n} y^{n+1}$. Can also linearize the term with a Taylor series.
- Newton's method (fast convergence, but requires a linear system solve at each step).
- Nonuniform grids
- Arbitrary grid
- Analytic stretched grid.

PDEs

- Approach:
- Nonlinear \rightarrow linear with iteration
- ODEs \rightarrow algebraic systems (linear/nonlinear)
- PDEs \rightarrow ODEs and/or algebraic systems
- Examples of each
- Classification
- Elliptic, Parabolic, Hyperbolic
- Domains of dependence
- Qualitative/physical sense for each type.
- Characteristic Curves
- Parabolic:
- Conceptually: has an unsteady (d / dt) term and a diffusive ($\mathrm{d}^{2} / \mathrm{dx} \mathrm{x}^{2}$ second derivative) term. A first derivative (advective) term is optional.
- Elliptic:
- Conceptually: like parabolic above, but steady state (no d/dt term).
- Hyperbolic:
- Conceptually: has a d / dt term and a d / dx term, but no $\mathrm{d}^{2} / \mathrm{dx}^{2}$ diffusive term.

PDEs Parabolic

- FTCS
- BTCS
- Crank Nicholson
- Omega Method is a generalization (ω on the $\mathrm{n}+1$ term)
- Advantages/disadvantages for FTCS, BTCS, CN
- What is the order and stability of each.
- Method of Lines
- How to get and setup. How it differs from others
- Coupling in space of the different methods and how this affects a numerical method

Stability

- Stability Analysis
- Applied to FTCS, but works for others too.
- What do we mean by stability?
- How stability of ODE, relates to that of the FDE.
- Von Neumann Analysis (basic ideas only)
- Limitation on $d=\alpha \Delta t / \Delta x^{2}$.
- Physical interpretations of constraints:
- d is a ratio of timescales. Don't step more than some factor of the intrinsic physical process timescale

Multi-D

- Solution of Multi-D parabolic equation
- 2D grid in space
- Discretize both directions
- Stencil: depends on finite difference approx, but a 5 point stencil is common
- Explicit in time
- Straightforward: solve each gridpoint in terms of itself and its (four) neighbors at the previous time.
- Implicit in time
- Pentadiagonal matrix
- How to set it up, BC issues, ordering of gridpoints
- ADI
- Alternating Direction Implicit
- Use with Thomas Algorithm (TDMA)
- Works for Parabolic or Elliptic problems:
- Elliptic are more obviously applicable as they are naturally "implicit"
- Approach 1: matrix specific:
- Order grid in one direction, move off-diags to RHS, then iterate, changing grid order each time.
- Solves the whole grid: (nx*ny) x ($n x^{*} n y$) system.
- Hoffman's equation implies this method.
- Approach 2: grid specific:
- Sweep rows of grid, solving 1-D tridiagonal system for each row, then do the same for each column.
- Solves an (nx) $\mathrm{x}(\mathrm{nx}$) system for each row, then an (ny) x (ny) system for each column, rather than whole grid of points as in Approach 1.
- For unsteady problems, don't have to iterate to convergence.

Finite Volume Method

- Solve integral rather than differential equation on a grid of finite volumes rather than a grid of points.
- Three equivalent approaches
- Apply standard: Accumulation = In - Out + Generation
- Integrate the PDE over the CV
- Start from scratch and apply the Reynolds Transport Theorem equation to each CV
- Properties are assumed constant in a CV, and along a surface (CS)
- Uses Gauss Divergence Theorem. $\int_{V} \nabla \cdot \vec{v} d V=\int_{A} \vec{v} \cdot \vec{n} d A$
- Face properties evaluated using averages (interpolation), or by using finite differences (for derivatives), or both.
- Usually flux-based, and conservative by construction. Often write directly in terms of fluxes, without doing full substitution.
- More naturally accommodates heterogeneous materials.
- Formulation can be similar to finite difference method for special cases.

Finite Volume Issues

- Interface conductivity (or viscosity, or diffusivity).
- Harmonic mean not arithmetic mean.
- Find the face conductivity by equating heat fluxes across cell ($\mathrm{q}^{+}=\mathrm{q}^{-}$and $\mathrm{q}^{+}=\mathrm{q}$ gave two equations in $\mathrm{k}_{\text {face }}$ and $\mathrm{T}_{\text {face }}$).
- Linear interpolation is inferior.
- Grid decoupling for first derivatives
- Pressure gradient in N.S. equations, or convective terms in general
- Allows checkerboarding
- Use a staggered grid for velocities
- Eliminates checkerboarding, and is convenient for evaluating fluxes at cell faces (which is where the velocities are located).

Advection/Diffusion

- Two parameters: $\mathrm{c}=\mathrm{u} \Delta \mathrm{t} / \Delta \mathrm{x}, \mathrm{d}=\Gamma \Delta \mathrm{t} / \Delta \mathrm{x}^{2}$. (Timescale ratios)
- FTCS
- Conditionally stable, consistent, $\mathrm{O}(\Delta \mathrm{t}), \mathrm{O}\left(\Delta \mathrm{x}^{2}\right)$
- $\mathrm{d}<1 / 2$, and $\mathrm{c}^{2}<2 \mathrm{~d}$
- BTCS
- Unconditionally stable, consistent, $\mathrm{O}(\Delta \mathrm{t}), \mathrm{O}\left(\Delta \mathrm{x}^{2}\right)$
- Central difference "bad" on advective terms
- wrote in terms of Pe , unphysical increase without a source term
- Upwinding solves this, but lower order, and diffusive.

Advection/Diffusion

- Exponential scheme
- Instead of central differences or upwinding, we incorporate the exact solution of the SS, 1-D problem with no source for the discretization
- Use exact solution to evaluate the flux at a face in terms of its neighbors \rightarrow coefficients of neighbors as before, but different form.
- Simplify by approximating the exponentials using polynomials or piecewise linear functions.
- Write in terms of Peclet number Pe (analogous to Re for scalars).

