Chemical Engineering 541
Numerical Methods

Exam 2 Review




Exam 2 Review

Classes 17-29
Homework 5-7
ODEs

— Boundary Value Problems—Shooting

— Boundary Value Problems—Relaxation

PDEs

— Classification

— Parabolic PDEs

— Elliptic PDEs

— Finite Volume Method
— Advection/Diffusion



ODEs, BVP, Shooting

BVP

Characteristics
Differences between IVP, BVP
Recognize linear vs nonlinear.

BCs
— Three types: identify each by name, by physics, example

Two methods: shooting and relaxation
Shooting method

Reduce 2M order (or higher) ODE to system of 1st order ODEs
March from one end to the other

Don’t know all BC’ s at one end - Guess.

Shoot to the end

Update guess at starting point based on BC values at end point.
Formulate as a nonlinear equation solve - Newton, secant, etc.



Relaxation Methods

« Shooting vs Relaxation
— Advantages and disadvantages

* Relaxation
— Discretize domain into a grid of points

— Apply finite difference approximations to derivatives in ODE in
terms of grid points

— ODE is now a coupled system of algebraic equations
» Solve this linear or nonlinear problem using any standard method

» Direct solution of a linear system. Depends on number of points in the FDE.
Tridiagonal can be convenient and fast.

* |terative solution.
* Nonlinear = direct Newton’s method, or linearize and iterate.

— Formulation of the linear system including boundary conditions




BVP Relaxation Methods

« BCs
— Dirichlet are straightforward, done before
— Neumann and Robin conditions.
— Discretize the boundary condition in all cases.
— Ghost Cell method:

Include Boundary point in unknowns.
Apply BC to eliminate the Ghost Cell that arises.

— Method 2:

Don’t include the boundary point in unknowns, but boundary point arises in equation for point 1.

One-sided difference on boundary condition to eliminate the boundary point from equation for points next to
boundary.

— Advantages and disadvantages of each method

 Nonlinear Relaxation Methods

— lterate: factor nonlinear terms into a linear component, and a lagged component.
Example: (y2)"1 = ynhyn*1. Can also linearize the term with a Taylor series.

— Newton’s method (fast convergence, but requires a linear system solve at each step).
« Nonuniform grids
— Arbitrary grid
— Analytic stretched grid.




PDESs

« Approach:
— Nonlinear - linear with iteration
— ODEs - algebraic systems (linear/nonlinear)
— PDEs - ODEs and/or algebraic systems

« Examples of each

« Classification
— Elliptic, Parabolic, Hyperbolic
* Domains of dependence
» Qualitative/physical sense for each type.
» Characteristic Curves
— Parabolic:

« Conceptually: has an unsteady (d/dt) term and a diffusive (d%/dx? second
derivative) term. A first derivative (advective) term is optional.

— Elliptic:
» Conceptually: like parabolic above, but steady state (no d/dt term).

— Hyperbolic:

« Conceptually: has a d/dt term and a d/dx term, but no d%/dx? diffusive term.




PDEs Parabolic 7

« FTCS

« BTCS

* Crank Nicholson

« Omega Method is a generalization (w on the n+1 term)

« Advantages/disadvantages for FTCS, BTCS, CN
— What is the order and stability of each.

* Method of Lines
— How to get and setup. How it differs from others

« Coupling in space of the different methods and how this
affects a numerical method




Stability 8

« Stability Analysis
— Applied to FTCS, but works for others too.

— What do we mean by stability?
» How stability of ODE, relates to that of the FDE.

— Von Neumann Analysis (basic ideas only)

e Limitation on d = aAt/AX4.

— Physical interpretations of constraints:

» dis a ratio of timescales. Don’t step more than some factor of
the intrinsic physical process timescale




Multi-D 9

« Solution of Multi-D parabolic equation
— 2D grid in space
— Discretize both directions

— Stencil: depends on finite difference approx, but a 5
point stencil is common

« Explicit in time

— Straightforward: solve each gridpoint in terms of itself
and its (four) neighbors at the previous time.

* Implicit in time
— Pentadiagonal matrix
— How to set it up, BC issues, ordering of gridpoints




- ADI

— Alternating Direction Implicit
— Use with Thomas Algorithm (TDMA)

— Works for Parabolic or Elliptic problems:
« Elliptic are more obviously applicable as they are naturally “implicit”

— Approach 1: matrix specific:

» Order grid in one direction, move off-diags to RHS, then iterate, changing grid
order each time.

« Solves the whole grid: (nx*ny) x (nx*ny) system.
* Hoffman’s equation implies this method.
— Approach 2: grid specific:
« Sweep rows of grid, solving 1-D tridiagonal system for each row, then do the
same for each column.
» Solves an (nx) x (nx) system for each row, then an (ny) x (ny) system for each
column, rather than whole grid of points as in Approach 1.

— For unsteady problems, don’t have to iterate to convergence.




Finite Volume Method

Solve integral rather than differential equation on a grid of finite
volumes rather than a grid of points.

Three equivalent approaches

— Apply standard: Accumulation = In — Out + Generation
— Integrate the PDE over the CV

— Start from scratch and apply the Reynolds Transport Theorem equation to
each CV

Properties are assumed constant in a CV, and along a surface (CS)
Uses Gauss Divergence Theorem. /VV-szV:/Aﬁ-ﬁdA

Face properties evaluated using averages (interpolation), or by using
finite differences (for derivatives), or both.

Usually flux-based, and conservative by construction. Often write
directly in terms of fluxes, without doing full substitution.

More naturally accommodates heterogeneous materials.
Formulation can be similar to finite difference method for special cases.



Finite Volume Issues

 Interface conductivity (or viscosity, or diffusivity).

— Harmonic mean not arithmetic mean.

— Find the face conductivity by equating heat fluxes across cell
(g*=q- and q*=q gave two equations in ke, and T¢,ce).

— Linear interpolation is inferior.

« Grid decoupling for first derivatives
— Pressure gradient in N.S. equations, or convective terms in
general
— Allows checkerboarding

— Use a staggered grid for velocities
« Eliminates checkerboarding, and is convenient for evaluating fluxes
at cell faces (which is where the velocities are located).




Advection/Diffusion

« Two parameters: c=uAt/Ax, d=IAt/Ax2. (Timescale ratios)

« FTCS

— Conditionally stable, consistent, O(At), O(Ax?)
— d<1/2, and c?2 < 2d

« BTCS
— Unconditionally stable, consistent, O(At), O(Ax?)

« Central difference “bad” on advective terms
— wrote in terms of Pe, unphysical increase without a source term

« Upwinding solves this, but lower order, and diffusive.




Advection/Diffusion

« Exponential scheme

— Instead of central differences or upwinding, we
incorporate the exact solution of the SS, 1-D problem
with no source for the discretization

— Use exact solution to evaluate the flux at a face in
terms of its neighbors = coefficients of neighbors as
before, but different form.

« Simplify by approximating the exponentials using
polynomials or piecewise linear functions.

« Write in terms of Peclet number Pe (analogous to Re for
scalars).




