“Yo, | know 1t to a thousand places”

... but how many places (digits) to you need to know?

3.141592653@9323846264338

32795028841 139937510582097

494459230781644 709862803482
5342117067982 06647093844

60955058223177 45028410270
19385211055596446 44288109756659
3344612847564823378 16485669234603486

1558817488152092096

1384146951941511609433
237996274956

1045432664821339360726

282925409171536436789259
057270365759591953092186117

What to learn (and quiz later)...

Binary

convert binary to decimal (>1 and <1)

Floating point representation

why is it called that?
how are 1.001E3 and 2.2E-1 added?
parts of a FP number: names and roles

Precision

what is the relative error?
how many bits in a byte?
how many bytes in a double?
In math we have N, Z, Q, R, C
* Which do we have on computers?
Is a+b+c = a+c+b? Why?

Roundoff error analysis

what is 1/10 in binary? (why is
that interesting?)

Which is best: a%-b? or (a-
b)(a+b)?

Which should make you more
nervous: vaz or sz
why? ¢ ¢

Why is subtracting two nearly
equal numbers “bad?”

In decimal, we write:
101325=1-10°+0-10"+1-10°+3-10°+2-10-+5-10

Convert binary 11010 to decimal

110101=1-2°+1-2"4+0-2°+1:-2°4+0-2*+1-2
=32+ 16 + 0 + 4 + 0 + 1
= 53

What about 101.111°?

101.111=1-2°+0-2*+1-2"+1-2*+1-2°+1:-2
=4 + 0 + 1 + 1/2 + 1/4 + 1/8
= 5.875

Floating Point

Because the point floats: 101325 =
101325.E0 =
101.325E3 =
1.01325E4

float and double

e float =4 bytes = 32 bits
* double = 8 bytes = 64 bits

Double Precision Representation

s
) E (11) M (52)

0 00000000000 00

e Format: (—1)% x 1.M x 2F-1023
= S'is a sign bit (1 bit)
» M is the mantissa (52 bits), the number part
o Numbers between 0 and 2°2 — 1.
o 292 = 4 5F15 — 15 + 1 =16 digits of accuracy
o Note, binary doubles are normalized meaning they are left shifted until the
left-most bit is 1. This is assumed, giving a bit more accuracy.
» Fis the exponent (11 bits)
o 11 bits — 211 = 2048 — 1020481,
= The 1023 is a bias (shift), allowing negative exponents.
o So, instead of 0 to 2047, have roughly 1071023 to 101023,

From Numerical Recipes

S x M x b¥¢

S E F Value

any 1-2046 any (-1)%x 2B7108y qF

any 0 nonzero (-‘I)Sx 2E-10225 o F
0 0 0 +0.0
1 0 0 —0.0
0 2047 0 +oo
1 2047 0 —00
any 2047 nonzero NaN
0 01111111111 00 = +1 x 210237102 1 o, =1
1 01111111111 00 = —1 x 21023-1023 5 1 g, =-1
0 01111111111 1000 = +1 x 21027102 1 1, =15
0 10000000000 00 = +1 x 210247102 1 o, =2
0 10000000001 101000 = +1 x 21025-1023 5 1 1010, =6.5

import bitstring
bitstring.BitArray(float=1.5, length=64).bin

'0011111111111000 '

Roundoff Error

X
T Y S R
X X
' (loosely, for illustration)
€mach

Numbers have to be rounded to the nearest number that can be represented

3.1415926535897932
_'_I

Emach

Machine Precision

€ is the smallest number for which fl(1+ €) > 1

import sys
€ is the “relative error”

eps = sys.float_info.epsilon RE = (#_ # ct) /# "
exa exa

eps _
2.220446049250313e-16 Suppose &y, = 0.001,

1.001 x 10% — 1.000 x 106
2%%-52 RE= 1.000 x 106
2.220446049250313e-16 '

0.001 x 106
1.0+eps = 6 0.001 = €mach
1.0000000000000002 1.000 x 10
i-g*eﬂs/ 2 The exponent part cancels, so €., is

just the smallest nonzero number in
the mantissa

Roundoff error

 Floating point operations: z[ly, where L1 is one of + - * |
= fl(xUy) = round(zy), that is, have to round.
= T + Yy — need the same exponents — lose digits of the smaller number.
o Suppose we had 4 digits to work with:
1000. + 7.200 — 1.000E3 + 0.0072E3 — 1.007E3. So we lose the 2.
= T *x Yy — Add the exponents and multiply the mantissas — rounding error, but not as
severe.
»a+b=>b+a,but(a+bd)+c#a+(b+c).
o Commutative, but not associative.
o For example, for e < %Emach; (1+€)+e=1butl+ (e+e¢€) >1.
o Or, another way: suppose |€| < €mqch, then (1 + €) — (1 — €) = 2¢, butona
computeritis 0

Roundoff error disasters

The Patriot and the Scud.

Sources
1. General Accounting Office Report GAO/IMTEC-92-26.
2. Robert Skeel, "Roundoff Error Cripples Patriot Missile," SIAM News, July 1992.

On February 25, 1991, during the Gulf War, a Patriot missile defense system let a Scud
get through. It hit a barracks, killing 28 people. The problem was in the differencing of
floating point numbers obtained by converting and scaling an integer timing register. The
GAO report has less than the full story. For that see Skeel's excellent article.

https://web.ma.utexas.edu/users/arbogast/misc/disasters.html

Roundoff error disasters

The Vancouver Stock Exchange.

Sources

1. The Wall Street Journal November 8, 1983, p.37.

2. The Toronto Star, November 19, 1983.

3. B.D. McCullough and H.D. Vinod Journal of Economic Literature Vol XXXVII (June
1999), pp. 633-665. (References communicated by Valerie Fraysse)

In 1982 (I figure) the Vancouver Stock Exchange instituted a new index initialized to a
value of 1000.000. The index was updated after each transaction. Twenty two months
later it had fallen to 520. The cause was that the updated value was truncated rather than
rounded. The rounded calculation gave a value of 1098.892.

https://web.ma.utexas.edu/users/arbogast/misc/disasters.html

Roundoff error disasters

Parliamentary elections in Schleswig-Holstein.

Source
1. Rounding error changes Parliament makeup, Debora Weber-Wulff, The Risks Digest,

Volume 13, Issue 37, 1992.

In German parliamentary elections, a party with less than 5.0% of the vote cannot be
seated. The Greens appeared to have a cliff-hanging 5.0 %, until it was discovered (after
the results had been announced) that they really had only 4.97 % . The printout was to two
figures, and the actual percentage was rounded to 5.0%.

https://web.ma.utexas.edu/users/arbogast/misc/disasters.html

Floating Point Analysis

See Jupyter Notebook

	Slide 1: “Yo, I know π to a thousand places”
	Slide 2: What to learn (and quiz later)...
	Slide 3: Binary
	Slide 4: Floating Point
	Slide 5: Double Precision Representation
	Slide 6: From Numerical Recipes
	Slide 7: Roundoff Error
	Slide 8: Machine Precision
	Slide 9: Roundoff error
	Slide 10: Roundoff error disasters
	Slide 11: Roundoff error disasters
	Slide 12: Roundoff error disasters
	Slide 13: Floating Point Analysis

