Outline

- Applications
- Tuny, Flame Speed
- Flame Regimes
- Flore Stubilization.

. Turb Premixed flaves are an wree of orgoing Research

- · Mary theoretical madels
- " Here, Treatment is empirical and largely Questitative
- · Key Quantity is The Turnelent flowe Speed.

Applications.

- Spark ignition Engines

· Inject liq. fuel - as vaporizes, mixes (not perfectly)

- · gases are Tustilal
 - Injection jets / exhaust
 - Piston Speeds.

- Gas Turkin Engines

- Run Premixed (Poestial)
 - Reduce Nox : Dilution/ Lean operation
 - Reder 10 " Lean operation.
 - Reduce Soot: Itan + 1845 Soot in to Premixed on There are no rich regions, unlike nonpremixed blones
- Industrial / Residential Heaters / business
- Issues include Sufety; blookback + blomout inject Prenixture - Flame Stability to Blowant - ignite a layer volume
 - 7 noise
 - emissions: unborned fuel

Turbulent Flore Speed - Consider a turished flowe bottersh"

- Tury, Have Thought of as a regular

laminer flowe, which is wrinkled by

The turbulence. - Turbular flame Speed St is The Speed of the blane brush, relative to reactions, in a direction Mormal to itself, and towards The reactions. · Save as The lawiner speed, but place brugh, instead of the flows. Q: How Toos The Torsbulend flowe Speed Compare to The Panisas Speed Higher ? Lower 7 -> Higher -> why ? Note, unlike Se, St is not a purely Thermochemical property, but Depends on The flow itself. At the sale m= PAV -> PRAz. S_ = PRA. St St= St At or St = m (A is # to the brush) . Turbulare winkles The flower -> At 7A -> · In a sense, The trypolence "pushes" The flore forward by Curving it - higher area. · Consider from 2 points (at flowe, () -pstream To Calc: St, need (St, At), or, (in, P, A)
hand casies. easier. See Example 12.1

Premixed Combonstion Regimes.
- last Time we saw That The turb, jet at two Re had The
Same large Scale Character, but the Small Scales got Smaller
- There are 2 important Tusbulet Scales.
1) Integral: Lo, u' -> To- /20 Longe
(2) Kolvegorov: M, Um, In: M/Um Small
- Consider a turbulent premixed flower.
Q: what is son The turbulare Des to The flame? How is see The turb interact? How Do interactions vary?
-> Turbulence / - Fluctuations, Eldies of various Sizes but mais
- Consider Integral, Kolmegorov. - These eddies fluctuate at given Seale
Fland - Given length, Speed, -> T.
Turbulence interacts of Flame as Turbulence Scales.
interact of Flow Scales.
o m
Distributed Pexas

Broken Rxn Zous

(FINITES in eddies)

Thin Rxn Zouls

Corrugated
flewelets (Rxn Sheets)

Quantify These w/ Dimensionless Ratios.

Danköhler Number

Reynolds Number

Karlovitz Mumber.

$$K_a = \frac{\tau_F}{\tau_{\gamma}} = \frac{\delta^2}{m^2} = \frac{v_m^2}{s_1^2}$$

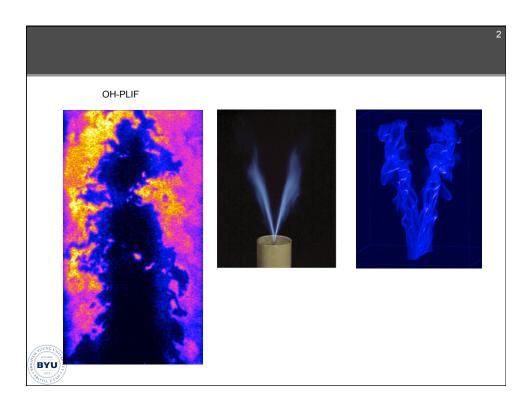
- Like on inverse That is soll, not larger-Scale Mixing.

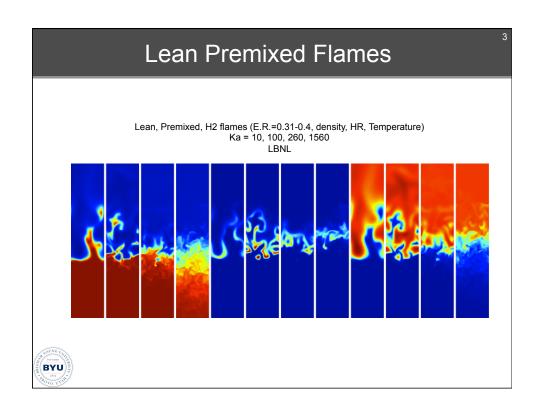
Peters' Regime Diagram. -> See PPT

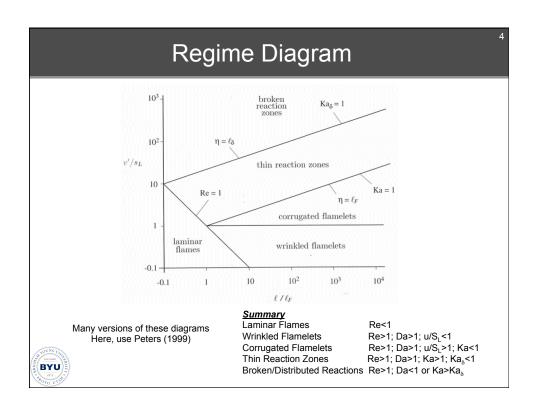
Corrugated Flamelets (and Thin Rxn yours) most important in practice.

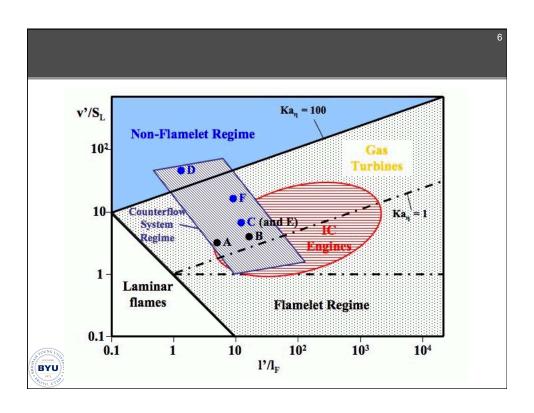
Correlations:
$$Pankohler: S_{t}/S_{t} = 1 + V_{res}'/S_{t}$$

Klimov: $S_{t}/S_{t} = 3.5 \left(V_{res}/S_{t} \right)^{0.7} V_{res}/S_{t}$
Clavin, William: $S_{t}/S_{t} = \left\{ 0.5 \left(1 + \left(1 + 8 \left(V_{res}'/S_{t} \right)^{0.7} \right) \right\}^{1/2}$


Chemical Engineering 522


Combustion Processes


Turbulent Premixed Flames


1

