Chemical Engineering 522

Combustion Processes

Turbulent Nonpremixed Flames

Laboratory Jet Flame

Diesel Spray

Fire

Flares

Coal Furnace

Characteristics

- Turbulent diffusion flames are most common in practical combustion systems
 - Simple
 - Easy to control
 - Pollutant issues are a challenge
- Applications
 - Glass furnaces
 - Cement kilns
 - Coal boilers
 - Diesel engines
 - Flares
 - Fires
- Key issues
 - Flame length
 - Flame stability
 - Heat transfer: often highly radiative, sooting
 - Pollutant emissions

Primary Configuration

- Simple jet flame
 - Swirled jets are important too, as well as free buoyant flows
- As for premixed flames, we can define the concept of a turbulent flame brush.
 - Similar to premixed flames in this sense
 - have a thin flame surface
 - · turbulent wrinkles the flame
 - Differences
 - · No flame speed
 - · No intrinsic flame thickness
 - Flame thickness determined by the local strain field
- Combustion rate is dictated not by how turbulence wrinkles the flame, as in a premixed flame, but how fast turbulence brings fuel and oxidizer together at the molecular scale.
- However
 - Reactions happen at the stoichiometric surface.
 - Turbulence increases combustion rate by increasing this surface area, and by increasing gradient at this surface.

Jet Flame Length

- Use cold flow jet observations
 - Laminar jets:
 - L∝ Q
 - Length is proportional to flow rate, not velocity or diameter alone. Length depends on the exit momentum.
 - Turbulent jets:
 - L is independent of Q
 - L does depend on the jet exit diameter
 - (See next slide)

Jet flame length

Jet Flame Length

Jet Flames

- Key differences of jet flames from cold jets
 - Density variation
 - Effect of T, y_i on viscosity.
 - Buoyancy (more important at lower jet velocity)
- Flame length
 - Visual
 - − T_{max} → downstream location where the average ξ has decayed from 1 to ξ_{st} .
 - Lower ξ_{st} , longer flame (jet has to entrain more air)

Analysis

- Ignore buoyancy, radiation
- Constant MW, c_p
- Unity Sc, Pr, Le
- State relations for $\rho(\xi) \rightarrow$ solve ξ equation
- Boundary layer assumptions
- Ignore ρ' correlations
- Constant eddy viscosity
- → looks like the laminar equations
- Numerical solution → Length:width = 11:1

Length Correlations

- Dependencies:
 - Momentum vs Buoyancy: Fr
 - $-\xi_{st}$
 - $-\rho_e/\rho_\infty$
 - $-d_{j}$
- Buoyant flames are shorter (all things equal): more mixing
- Lower → longer flames
- As d_i increases, L increases
- As ρ_e/ρ_∞ increases, L increases
 - Use $(\rho_e/\rho_\infty)^{1/2}$ since we care about exit momentum:

$$\dot{mom} = \dot{m}v = \rho Av^2 \propto \rho d^2v^2$$

– Now, $L \propto d \rightarrow L \propto \sqrt{
ho}$

Length Correlations

$$L_f \propto \frac{d_j(\rho_e/\rho_\infty)^{1/2}}{\xi_{st}} f(Fr)$$

- Here, f(Fr) is some function of the Froude number
- Can define a dimensionless length L* as

$$L^* = \frac{L_f}{d_j(\rho_e/\rho_\infty)^{1/2}/\xi_{st}}$$

• Plot L* vs Fr - Fr < 5 \Rightarrow $L^* = \frac{13.5Fr^{2/5}}{(1+0.07Fr^2)^{1/5}}$

- Fr > 5
$$\rightarrow$$
 L*=23

