

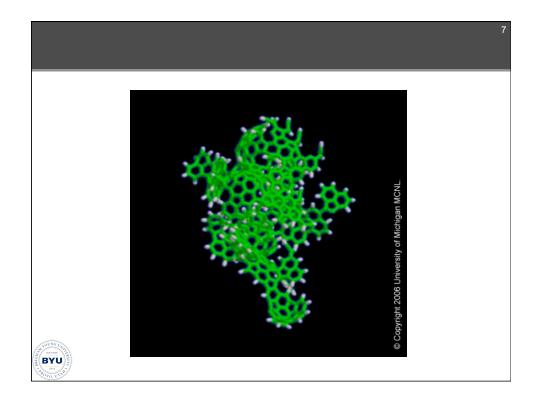
Soot Overview

- Soot forms in nonpremixed and rich premixed flames, but is most important in nonpremixed flames.
- Soot is a small carbonacious particulate species
- Soot forms on the rich side of nonpremixed flames as gaseous fuels are pyrolysed.
- Soot particles consist of agglomerates of nominally round primary particles.
- Primary particle sizes are around 50 nm.

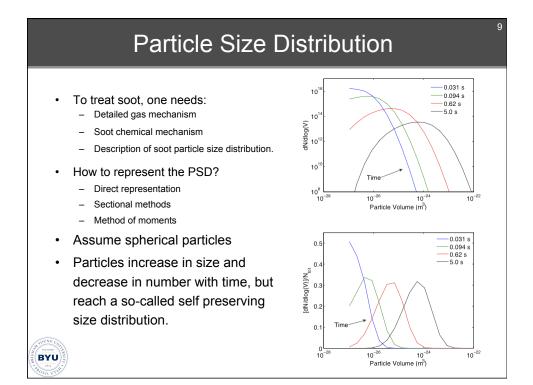
BYU

- Soot volume fractions are around 1-2 ppmv (up to 10-20).
- Soot forms at temperatures between 1300 and 1600 K.
- Formation mechanisms are highly complex and an important area of current research.
- Concentrations increase with pressure (engines)

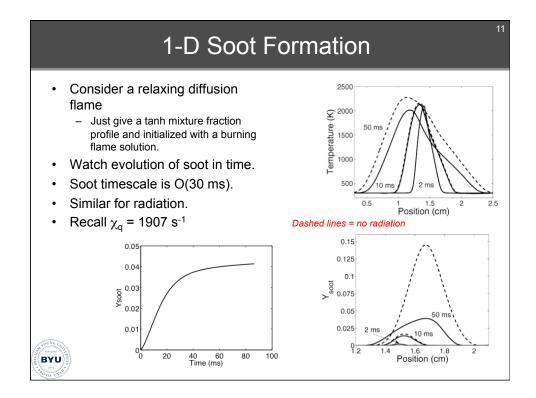
Smoke Point

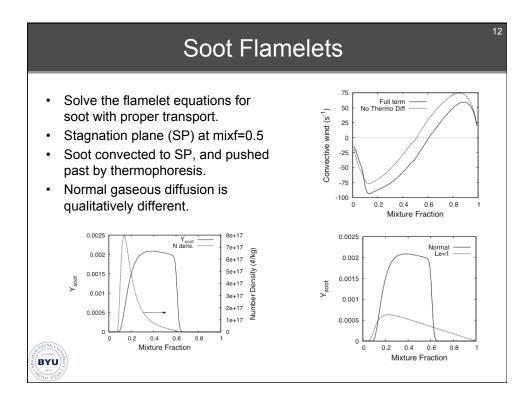

- Emperical measure of sooting propensity
- Laminar flames

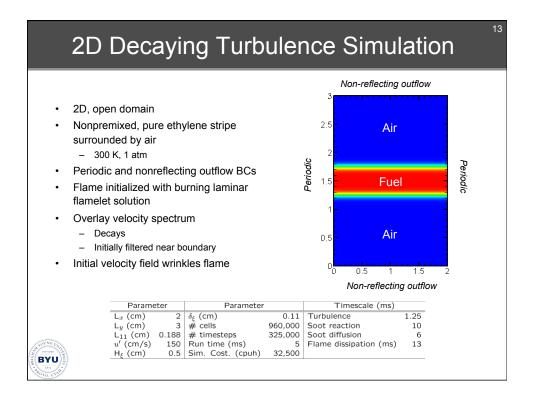
BYU

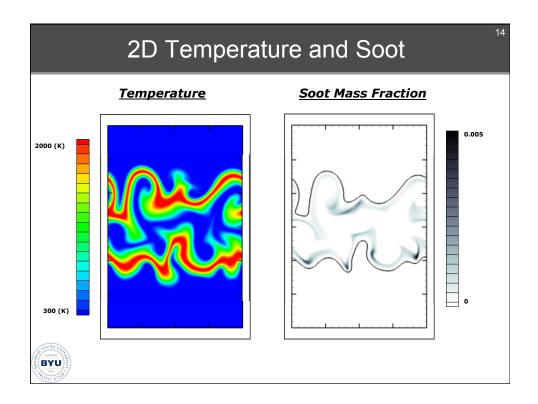

- Increase flow rate until smoke escapes flame tip
 - Recall flame length depends on flow rate alone.

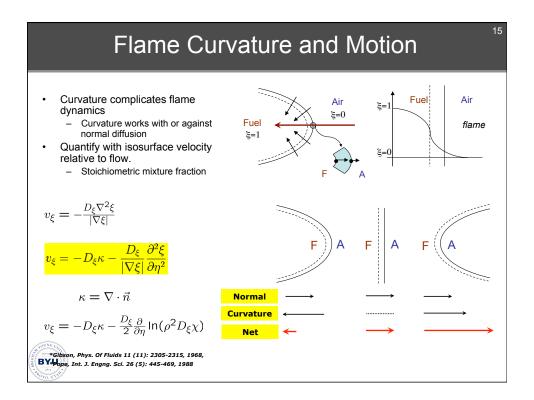
Fuel		mmisp (mg/s)	$f_{\nu,m} imes 10^6$	Y _s (%)
Acetylene	C_2H_2	0.51	15.3	23
Ethylene	C_2H_4	3.84	5.9	12
Propylene	C_3H_6	1.12	10.0	16
Propane	C_3H_8	7.87	3.7	9
Butane	$C_{4}H_{10}$	7.00	4.2	10
Cyclohexane	C ₆ H ₁₂	2.23	7.8	19
n-Heptane	$C_7 H_{16}$	5.13	4.6	12
Cyclooctane	C ₈ H ₁₆	2.07	10.1	20
Isooctane	C_8H_{18}	1.57	9.9	27
Decalin	C10H18	0.77	15.4	31
4-Methylcyclohexene	C7H12	1.00	13.3	22
1-Octene	C ₈ H ₁₆	1.73	9.2	25
1-Decene	$C_{10}H_{20}$	1.77	9.9	27
1-Hexadecene	C16H32	1.93	9.2	22
1-Heptyne	C7H12	0.65	14.7	30
1-Decyne	$C_{10}H_{18}$	0.80	14.7	30
Toluene	C_7H_8	0.27	19.1	38
Styrene	C_8H_8	0.22	17.9	40
o-Xylene	C_8H_{10}	0.28	20.0	37
1-Phenyl-1-propyne	C_9H_8	0.15	24.8	42
Indene	C_9H_8	0.18	20.5	33
n-Butylbenzene	C10H14	0.27	14.5	29
1-Methylnaphthalene	C11H10	0.17	22.1	41


•	Many mechanisms of varying complexity exist:
	 Emperical mechanisms (Correlate directly to fuel or mixture fraction)
	 Semi-empirical mechanisms (Assume global steps for important processes) Leung and Lindstead
	 Detailed mechanisms (Attempt to directly model the detailed chemistry) HACA mechanism
•	Four-step process
	1. Nucleation: $C_2H_2 \rightarrow 2C(s) + H_2$
	2. Growth: $C_n(s) + C_2H_2 \rightarrow C_{n+2}(s) + H_2$
	3. Oxidation: $C(s) + 1/2 O_2 \rightarrow CO$
	4. Coagulation: $C_n(s) + C_n(s) \rightarrow C_{2n}(s)$
•	The first three use common (global) reaction rates, and the last is written in terms of particle collision theories.
•	Soot is treated as a particle phase with source/sink coupling to the gas phase.




Transport				
 Soot transport via Convection Diffusion Thermophoresis Soot diffusivity varies inversely with square of particle diameter. Le = 9500 for 1 ppmv, n=1x10¹⁷ m⁻³, 1500 K. Thermophoresis dominates 	$\begin{aligned} \frac{\partial(\rho Y_{\rm s})}{\partial t} &= -\nabla \cdot (\rho Y_{\rm s} \boldsymbol{v}) - \nabla \cdot \boldsymbol{j}_{\rm s} + S_{Y_{\rm s}} \\ j_{\rm M} &= -\rho D_{\rm p1} \nabla \left(\frac{1}{{\rm Le}_{\rm s}} \frac{M}{\rho}\right) - 0.556M \frac{\nu}{T} \nabla T, \\ D_{\rm p,k} &\propto k^{-2/3} \qquad D_{\rm p,k} = D_{\rm p,1} k^{-2/3} \\ Le_s &= k^{2/3} = (\rho Y_s / nm_1)^{2/3} \end{aligned}$			
diffusion and acts to push soot away from a flame.	Here, M is either $ ho Y_s$ or number density (#/m³)			




Method of Moments					
 Detailed and sectional models are expensive Instead, solve for statistical moments of the PSD. Closure problems arise. Fractional moments. Other unclosed moments Closure approaches Interpolation/extrapolation Assumed shape distributions Monodispersed: 2 Moments Quadrature (QMOM, DQMOM) 	$\frac{\partial n_j}{\partial t} + \nabla \cdot (\vec{v}n_j) = \nabla \cdot \left(0.556\nu n_j \frac{\nabla T}{T}\right) + \dot{n}_j$ $M_r = \sum_{j=1}^{\infty} j^r n_j, r = 0, \infty$ $\frac{\partial M_r}{\partial t} + \nabla \cdot (\vec{v}M_r) = \nabla \cdot \left(0.556\nu M_r \frac{\nabla T}{T}\right) + S_{M_r}$				

