

Exam	² 2 Review
 Classes 17-27 Chapter 15 Pollutant Emissions Chapter 6 Canonical Reactors Batch, PFR, PSR 	 Chapter 7 Governing Equations Shvab-Zeldovich Conserved Scalars Chapter 8 Premixed Flames Premixed Analysis Flame Speed Extinction/Ignition
•Reading: Chps 6-8, 15 •Homework assignments 5-6 •Class discussions	

Canonical Reactors	4
 Batch Reactor Species balance (accumulation = source) Write in terms of key quantities. Versions: adiabatic, or given T; const P or const V. Energy equation is optional depending on method. Plug flow reactor Just a batch reactor with a time/space transformation with velocity. Velocity given by m=pAv 	

Conservation Equations	6
 Coupling thermo, kinetics, and transport for generic systems, flames. Conservation Laws Mass Species Momentum Energy Derive with Reynolds Transport Theorem Lagrangian = Eulerian Conservation law (CL) written for Lagrangian → CL = Eulerian Coordinate systems Notes for gradient, divergence operator in Cartesian, Cylindrical, Spherical. Notes for expanded mass and momentum equations from Bird et al. 	

