Premixed Flames

More Flames

Questions

- Why are the flames blue?
- Why are they shaped that way?
- How fast is the flame?
- How thin is the flame?
- How do these depend on T, P, ϕ ?
- What are the basic combustion properties?
- Why and how are premixed flames used?
- What are safety considerations?

Premixed Characteristics

- Premixed flames link previous concepts
- Kinetics
- Transport
- Thermochemiostry / Stoichiometry
- Laminar flames are a prerequisite for turbulent flames.
- Reactants are premixed, but can be rich or lean
- Flame speed is an intrinsic and fundamental property of these flames. Also, flame thickness
- Flames are:
- Local
- Self-sustaining,
- Subsonic (deflagration). Supersonic \rightarrow detonation, different mechanism.

General Flame Structure

- Flames propagate as a combustion "wave"
- Thin, High T reaction zone.
- Wave:
- Inlet: Heat, species diffuse from reaction zone into "preheat zone", where fuel/air begin to react.
- Outlet: reactions slow/stop and hot products leave the reaction zone
- Density ratio ~ 7
- Thickness ~ 1 mm

- Flame speed $\sim 0.5 \mathrm{~m} / \mathrm{s}$

Const. P Adiabatic Density Ratios

	rho react $(\mathbf{k g} / \mathbf{m} 3)$ rho $\mathbf{p r o d}(\mathbf{k g} / \mathbf{m} 3)$	rho/rho	
H2	0.85	0.12	6.86
CO	1.16	0.17	6.92
CH4	1.12	0.15	7.47
C3H8	1.20	0.15	7.94
C2H4	1.17	0.15	8.01
isooctane	1.23	0.15	8.10
C2H2	1.16	0.14	8.36

Bunsen Flame-Speed

- Why is the flame angled?
- What would happen if it were not?
- Given the verticle (tube) velocity vt, can you find the flame speed (symbolically) using this picture?

$$
S_{L}=v_{u} \sin (\alpha)
$$

Turbulent V-Flame

Flame Stabilization

- Flames stabilized by
- Blowing gas above the flame speed \rightarrow angled flame
- Blowing gas below flame speed \rightarrow flame rushes toward burner.
- Flashback is a major safety hazard!
- Burner stabilized flame
- Water cooled, ceramics, tubes, sintered metal.
- Heat loss.

