Chemical Engineering 522

Combustion Processes

Pollutants

Outline

- Measurements
 - Emissions index
 - Basis
 - Corrected Concentrations
- CO/unburnt hydrocarbons
- SO_x
- Particles

Concentrations

Emissions index

- Many units for measurement (g/miles, lb/MMBtu, ppm).
- Which to use?
- Problems/confusion?
- How to deal with dilution?
- Emissions index is most straightforward.
- $EI = m_{i,emit} / m_{f,burned}$
 - Pollution / mass of fuel
 - Independent of dilution
 - Process dependent

$$EI = \frac{x_i}{x_{CO} + x_{CO2}} \cdot \frac{n_c}{n_f} \cdot \frac{M_i}{M_f}$$
$$EI(=) \frac{\text{moles i}}{\text{moles c}} \cdot \frac{\text{moles c}}{\text{moles f}} \cdot \frac{M_i}{M_f}$$

Dry/Wet basis, Corrected Conc.

- Measurements are often made on a dry basis (water interferes).
- Conversion (Turns 15.7):

$$x_{i,\,dry} = \frac{x_{i,\,wet}}{1 - x_{H2O}} = x_{i,\,wet} \cdot \frac{N_{mix,\,wet}}{N_{mix,\,dry}}$$

- True for rich or lean
- Corrected concentrations
 - If express emissions as concentrations, need to specify the basis, or else one could reduce "emissions" by diluting the effluent!
 - Correct to $3\% O_2$ on a wet or dry basis.
 - Consistent for different (A/F) of a Given fuel, but not among different fuels (e.g. compared to the EI).
 - $N_{i,1} = N_{i,2}$ (N_i is the same for both bases)
 - $x_{i1}N_1 = x_{i2}N_2$
 - $x_{i1} = x_{i2}N_2/N_2$
 - (Where N_2 is the total moles in basis 2 (not nitrogen \odot)).
 - SEE EQUATIONS 15.9 in Turns

Example

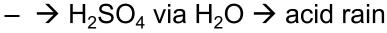
- (15.3 in Turns)
- Engine: iso-octane
 - 76 ppm dry NO
 - Exhaust \rightarrow 2.3% dry O₂.
 - CORRECT to 5% dry O_2 .

•
$$(x_{NO})_{5\%} = (x_{NO})_{2.3\%} * (N)_{2.3\%} / (N)_{5\%}$$

$$N_{wet} = 4.76 \left[\frac{x + (1 + \chi_{O2, wet})y/4}{1 - 4.76\chi_{O2, wet}} \right] + y/4$$

$$N_{dry} = 4.76 \left[\frac{x + (1 - \chi_{O2, dry})y/4}{1 - 4.76\chi_{O2, dry}} \right] - y/4$$

$$N_{2.3\%} = 4.76 \left[\frac{x + (1 - 0.023)y/4}{1 - 4.76 * 0.023} \right] - y/4 = 61.76 \text{ with } x=8, y=18$$
$$N_{5\%} = 4.76 \left[\frac{x + (1 - 0.05)y/4}{1 - 4.76 * 0.05} \right] - y/4 = 72.18$$


• (x_{NO})_{5%} = 65 ppm

- Due to Sulfur in fuel
 - Coal, Diesel, (Gasoline)
- $S \rightarrow SO_2 \text{ or } SO_3$.
 - All is converted (unlike NOx).
 - Makes it easier to predict!

Fuel wt. %	Range %
Coal	≤10
Heavy residual oil	0.5-4
Blended residuals and crudes	0.2-3
Diesel fuel (No. 2)	0.1-0.8
Unleaded gasoline	0.015-0.06

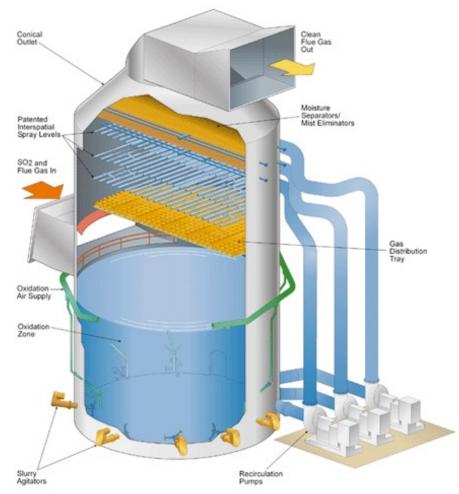
- Equilib → y_{SO2}/y_{SO3} = 3570, but SO₃ usually > equilib (a few % of SO₂)
- Utah coal = C₆₄H₃₂N_{0.67}S_{0.3}O_{2.5}. (or 1% S by mass)
 Combustion → 822 ppmv SO₂.
- $SO_2 \rightarrow SO_3$ via OH in gas phase, or via H₂O absorption

Acid Rain

1908

From a castle in Westphalia, Germany

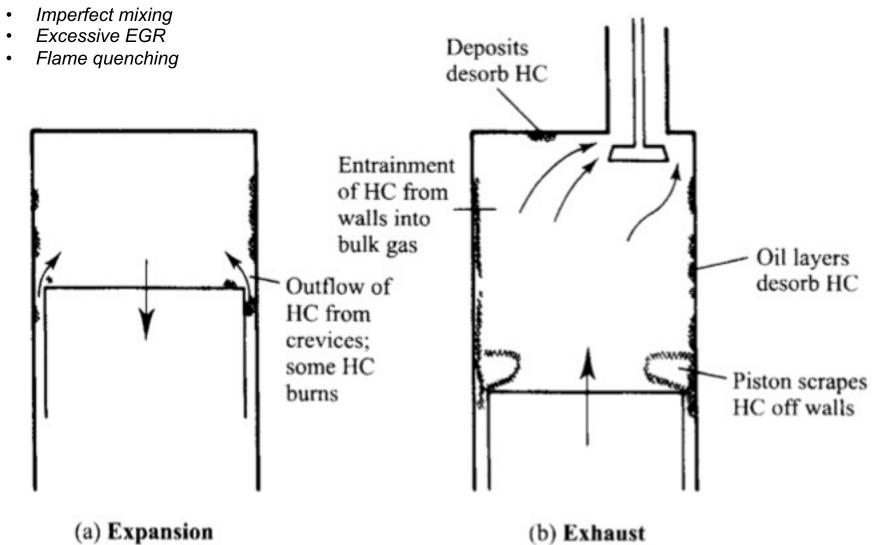
Acid Rain



Control

- Control:
 - Remove S from fuel
 - No S in gasoline → why?
 - Remove SO_x from effluent.
- Reduce SO₂ with limestone or lime:
 - CaCO₃ + SO₂ + 2H₂O → CaSO₃*2H₂O + CO₂.
 - CaO + SO₂ + 2H₂O → CaSO₃*2H₂O
 - Wet or dry: spray an aqueous slurry in a tower.

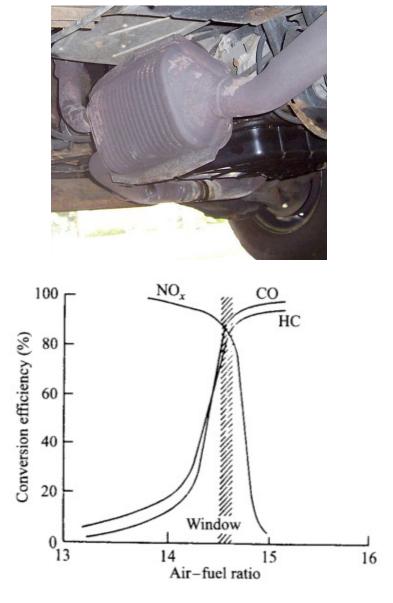
Flue Gas Desulfurization



Unburnt HC/CO

- Rich operation (vehicles) under high load or cold startup
- Run lean
 - Stoichiometric works, but incomplete mixing \rightarrow rich zones
 - So, run lean.
 - Can still get imperfect mixing \rightarrow some emissions.
 - Can run lean enough that combustion can become weak and incomplete
 - Or, the burning hits even leaner regions outside the flammability limits (discussed later).
- Wall quenching in engines
 - Crevices
 - Oil absorption
- Control with stoichiometry, mixing, or post-combustion oxidation.
 - − Three-way catalyst (catalytic converter) \rightarrow NO, CO, HC.
- Nonpremixed flames always have rich and lean zones.
 - Always produce soot, which may be considered an incomplete combustion product as well as a particulate emission. More on soot later.

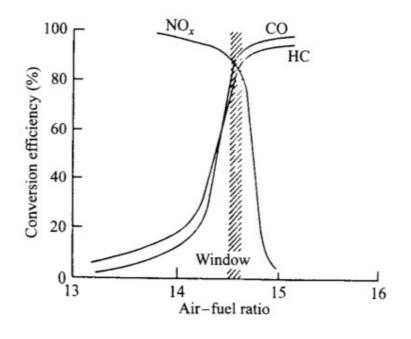
Wall Quenching


Catalytic Converter

OUNG

FOUNDER

BYU



Catalytic Converter

- Introduced in 1976
- Noble metal catalysts
 - Platinum (oxid/red), palladium (oxid), rhodium (red)
 - Deposites on a ceramic substrate
- Reduce NO, while oxidizing CO, HC
- Narrow range near stoichiometric
 - Oxygen control
 - Oxygen sensors

BYL

- Tetraethyllead poisons (also sulfur)
- Light off temperature: ~500 °F
 - Most emissions during first 5 minutes of startup before hot.

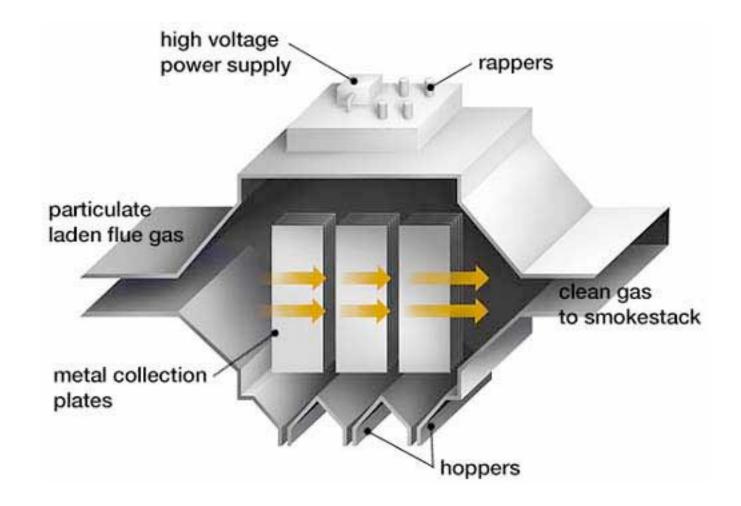
John Mooney

Particulates

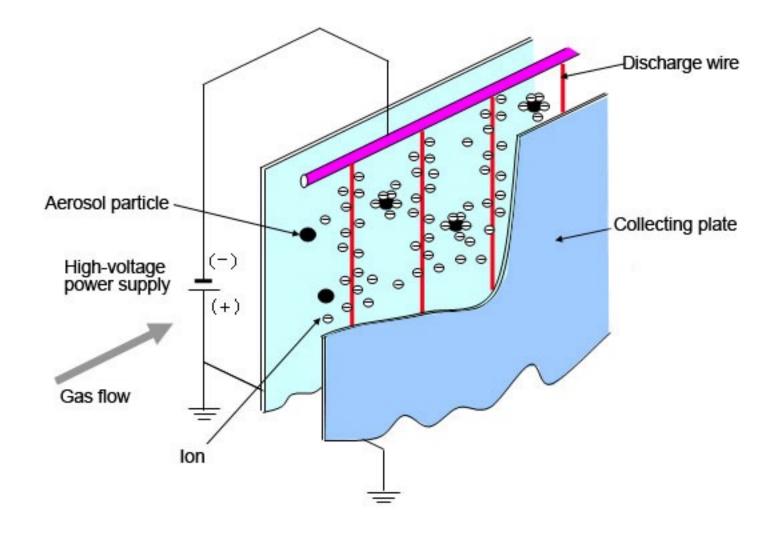
- Soot
- Fly ash
- Fine particulates cause
 - Haze
 - Health hazard: asthma, bronchitis, decreased lung function, shortness of breath
 - Fine soot can penetrate deeply in lungs, carcinogenic
 - See the EPA's 2004 "Air Quality Criteria for Particulate matter"

Particulates

- Nonpremixed (Diesel)
 - Soot
- Premixed (auto)
 - Condensed unburned HC
- Coal
 - Ash, Soot
- Control
 - Soot reduction
 - Collection
- Baghouse



Baghouse



ESP

ESP

