Chemical Engineering 522

Combustion Processes

Final Review

Final Review

- Exam 1 review
 - Classes 1-13 (+review)
 - Chapters 1-5, 15
 - HW 1-4
- Exam 2 review
 - Classes 17-27
 - Chapters 6-8, 15
 - HW 5-6
- Final review
 - Classes 29-41
 - Chapters 9, 11-13,16, 10
 - HW 7-8

- Chapter 9
 - Laminar diffusion flames
- Chapter 11
 - Turbulent flows
- Chapter 12
 - Turbulent premixed flames
- Chapter 13
 - Turbulent diffusion flames
- Chapter 16
 - Detonation
- Chapter 10
 - Droplets and sprays

Exam 1 Review

- Classes 1-13 (plus review)
- Chapter 1

 Introduction
- Chapter 2
 - Stoichiometry
 - Thermochemistry
 - Equilibrium

- Chapter 3
 - Mass transfer
- Chapter 4
 - Combustion Kinetics
- Chapter 5
 - Combustion
 Mechanisms
- Chapter 15

 NOx

Reading: Chps 1-5, 15
Homework assignments 1-4
Class discussions

Exam 2 Review

- Classes 17-27
- Chapter 15
 - Pollutant Emissions
- Chapter 6
 - Canonical Reactors
 - Batch, PFR, PSR

- Chapter 7
 - Governing Equations
 - Shvab-Zeldovich
 - Conserved Scalars
- Chapter 8
 - Premixed Flames
 - Premixed Analysis
 - Flame Speed
 - Extinction/Ignition

Reading: Chps 6-8, 15
Homework assignments 5-6
Class discussions

Diffusion flames

- Candle flame processes
 - Hollow, flame sheet
 - Flame colors
 - diffusion process: flame motion
- Laminar jets: nonreacting
 - boundary layer equations
 - assumptions
 - similar profiles: know what they look like
 - Length, velocity, width
- Reacting jets
 - Solution procedures (conserved scalar approach)
 - Correlations
 - Roper: theory, EXP (careful of notation here)

$$\frac{v_{x,0}}{v_e} = 0.375 Re \frac{R}{x}$$

$$\frac{r_{1/2}}{x} = 2.97/Re$$

$$L = \frac{3}{8\pi} \frac{Q}{DY_{f,st}}$$

Soot Formation

- Soot overview, general properties
 - growth process, key precursor species, structure
- Smoke point
 - empirical, laminar, flow rate \rightarrow smoke emission. trends
- Soot mechanisms
 - empirical, semi-empirical, detailed
 - 4 general steps (global)
- Transport
 - particles \rightarrow implications for diffusivity
 - Thermophoresis
- Size distribution: direct, sectional, MOM
- Soot radiation, formation timescales
- Simulation examples

Turbulence

- Most flows are turbulent
 - Examples
- Turbulent processes
 - Increase "surface" area and gradients for transport
 - Unstable flow
 - Cascade process: big eddies entrain, break down, diffuse as scales decrease.
- Scaling: scales, Re dependence
- Reynolds (and Favre) decomposition
 - Mean and fluctuation
 - Average the governing equations \rightarrow unclosed terms (Reynolds stresses).
 - Know what "unclosed" means, and the physical meaning of these stresses (what are they, what do they account for). $d\bar{v}$
 - Why do we bother averaging the equations
- Simple closure: mixing length:
- Jet solution
 - Use laminar solution with turbulent viscosity (const)

$$\frac{\bar{v}_{x,0}}{v_e} = 13.15 \frac{R}{x} \quad \frac{r_{1/2}}{x} = 0.08468$$

Independent of Re!

$$\tau_{turb} = \rho \nu_t \frac{d\bar{v}}{dx}$$
$$\nu_t = \rho L_m v_t$$
$$\nu_t = \rho L_m^2 \left| \frac{d\bar{v}}{dx} \right|$$
$$\nu_t = 0.1365 \rho L_m (\bar{v}_{max})$$

$$L_m = 0.075\delta_{99\%} = 0.075 * 2.5r_{1/2}$$

 $-\bar{v}_{min}$

Turbulent Premixed Flames

- Applications: SI engines, gas turbines
- Issues: safety, flashback
- Benefits: emissions, efficiency
- Flame brush
- Turbulent flame speed
- Combustion regimes
 - Turbulent scales: length, time, velocity
 - Flame scales: length, time, velocity
 - Know these regimes, and what they mean physically (see notes)
 - Da, Re, Ka
- Correlations for flame speed (wrinkled)
 - Klimov, Fig 12.10

BΥl

$$S_t = S_L \frac{A_t}{A}$$

Turbulent Diffusion Flames

- Applications: Diesel engines, furnaces, fires
- Benefits: simple, "safe"
- Issues: emissions, soot, NO_x
- Simple jet flame
 - differences with premixed flames
 - Jet flame length versus flow rate (Re)
 - Effect of buoyancy
- Flame length correlations (p. 498)

$$L^* = \frac{L_f \xi_{st}}{d_j (\rho_e / \rho_\infty)^{1/2}} \quad L^* = \frac{13.5 F r^{2/5}}{(1 + 0.07 F r^2)^{1/2}}$$
$$L^* = 23$$

Turbulent Flames—Liftoff, Blowout, Demo

- Liftoff, blowout
 - Physical processes: turbulence decays
 - Three theories.
 - Correlations: lifted height, blowout velocities.

Swirl effects

- Higher mixing
- Shorter flame
- Noise

BYL

- Less soot (why)
- Eventual blowout
- Modeling (presumed PDF method)
 - State relationship with mixture fraction
 - Convolve over PDF to get mean quantities
 - β-PDF for mixture fraction

Didn't cover

Radiation

- Flame radiation
 - Radiant heat fraction
 - Time, T, soot
 - 5-60%
 - Variation with fuel type: 15, 45, 60% max for methane, propane, acetylene
- Radiation concepts
 - Intensity definition
 - Heat flux, Volumetric heat source
 - Plane parallel
 - WSGG model, examples

Detonations

- Definitions: Detonations, Deflagration, Explosion, Flame, Combustion wave.
- Qualitative behavior
 - How they form, why, under what conditions (e.g., closed tube.)
- Analysis
 - Mass
 - Momentum
 - Energy
- Hugoniot curve, Rayleigh line.
 - Regimes, names, feasibility
 - Detonation speeds

Droplet/Spray Combustion

- Diesels, turbines, rockets
- Evaporation rate is key, then combustion in gas phase
 - Flame strongly influences evaporation rate, hence combustion rate
 - Droplet size, heat of vaporization, vapor pressure are key
 - Droplet lifetime
- Idealized evaporation model
 - assumptions, the usual, plus Tsurf=Tboil \rightarrow Energy balance only
 - E-bal at surface: conduction = vaporization
 - Get conduction temp gradient from T(r) in gas \rightarrow gas energy balance.
 - Solve for evaporation rate.
 - − D² law: D² = D₀² − Kt \rightarrow t_D = D₀²/K
- Burning droplets: same process, but different B.C.'s; especially a flame
 - 5 unknowns: m_F, Y_{F,s}, T_s, T_f, r_f
 - 5 eqns: Species (fuel) inner; Species (oxid) outer; E-bal at surf; E-bal at flame; Phase EQ
 - Solution outlined. (easier if Ts=Tboil)

Final Exam

- Comprehensive
- Weighted towards material since last exam.

