Detonation.

Q: Differences between

- · Explosion
- · Deflagration
- · Detonation
- · Flame

Explosion -

. Somewhat generic Term

· Rapid heat Release

- Chain Branching Reactions, Runaway Recetions

· Can be nomageneous

· Often means violent, uncontrolled

Deflagration

· Subsonie wave

· Combustion wave usually means Deflagration,

· Sustained by Reaction,

· Propagated by Diffusion:

A Diffusion were Sustained by Rxn.

Flame

· Usually means Deflagration,

· Flame Synonymous w/ Deflogration, combustion

word,

Detonation

· Supergonic ware sustained by Ren.

High up comprenes - Ando ignition.

Not Diffusion - Limited

Table : See Slide.

Videos: Chemical Plant

PDE

(x1)2 = 2/1 Products expend as cholord Flow - 17a=1 Shock from Deceying, as 12 touction Loutiness Compression was the preparities Dxn Zow bedind The chat conds a 6. shock Compressed ignites for a chod - high wp High speed flows - Compression weres pite up, tubulant flow Higher Speed -> borne punted out feed on - Succeeding wever certeh up - preheaping also increases flux speed. 8. Compression = higher flow spred the sound speed. 2. Gas expension sends and Compression weres as 1. To There propugates, tube cases . I see from (to prod inceptable od.) { POST FOR B Cold Reactouts. . Light at closed End: - Deflegistion, - Tube with prenixture show that he words

Can't exped feeter Then Soud -s Complerion

Complexation as of a complexation.

1 X-tone fior Process:

Analysis. - Flow in a tube: 1-D, SS, const A, Ideal Gas

· Frame Following Detoration - Det is Stationary with Flow in / out,

* Mass:
$$m_1^{\prime\prime} = m_2^{\prime\prime} \rightarrow P_1 V_1 = P_2 V_2$$

* Momentum: $P_1 + P_1 V_1^2 = P_2 + P_2 V_2$

$$\frac{dP_1}{dP_1} + \frac{Q}{QP_1} (PVV) = -\frac{dP}{dP_2} + \frac{dZ}{dP_2} + (FSody Fence)$$

45

$$- > Z = 0 \text{ ad inlet, outlet.} \rightarrow 6et$$

* Energy: $h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2}$ (argue / Show this.)

h = ho + (p (T-Tr) - Assure (p is const, (p, = Lpz

· hot CPT, - CPTr + V1 = hoz + CPTz - CPTr + V2

· CPT, + V1 + (hot - hoz) = CPTz + V2

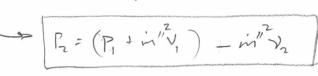
Z

 $\frac{q}{\sqrt{2}}$ $\frac{q$

* Ideal Gas Law: P=MP
RT . Assume M,=M2

- · Given State (): T, P, V, (-= m"=f, V,)
- · Have y egns in y unknowns: Vz, Tz, Pz

 (Technically we don't know V, -> Specify it for now)
 - $\frac{1}{\rho_2} = \partial_2$
 - . We can think of Mon, Energy as $2 \text{ egns in } P_2, \overline{P_2}$ with mass $\rightarrow V_2$ $\overline{1.6.1} \overline{1_2}$

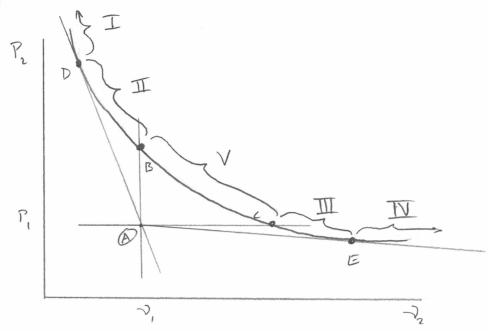

Combine Mass, Momentum

$$m''^{2} = P_{1}^{2}V_{1}^{2} = P_{2}^{2}V_{2}^{2} = P_{2} - P_{1}$$

$$\frac{1}{P_{1}} - P_{2}$$

Rayleigh Line

Plot



 P_2 P_1 P_2 P_3 P_4 P_4

kine-Algericat Curse (R.H.L) it Mass, Momentur, Evergy, Ideal Gas low, with $X = G/C_V$, $G - C_V = \frac{P}{M}$ ($J/kg \cdot k$)

 $\frac{1}{1-1}\left(P_{2}\overline{P}_{2}-P_{1}\overline{P}_{1}\right)-\frac{1}{2}\left(P_{2}-P_{1}\right)\left(\overline{P}_{1}+\overline{P}_{2}\right)-q=0$

12.L., 12HC:

I: Strong Detonation

Supersonic -> Subsonic. (Slows)

I Weak Detonation

Supersonic -> Supersonic (Slows)

(I Not Possible) - in 12 is slope is positive in V - not Possible

III Seak Deflagration.

Subsonie = Subsonie (speeds)

The Subsonie = Supersonie (speeds)

I. Possible, but hard to acheive.
"overdriven shock in special Config.

II. Most Detorations happen at point D

· Entropy is minimum here (See Supplement)

III "Premixed Flames" are just below Point (

IV Not observed (no subsonie - super sonie in a Const A

· Entropy is maximum at Point E. (See Supplement.)

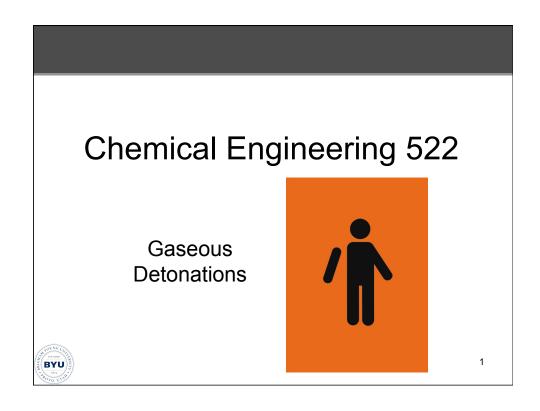
* D, E are Chapman Jouget Points: 6,5

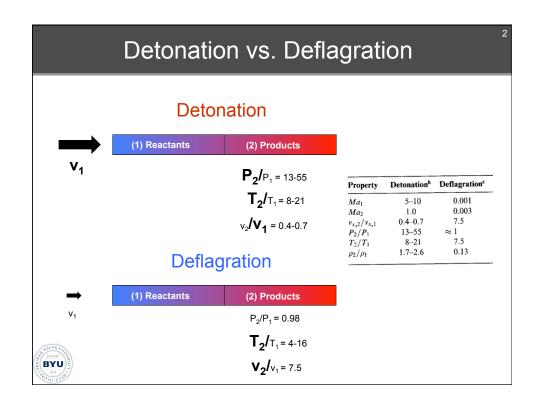
Velocity

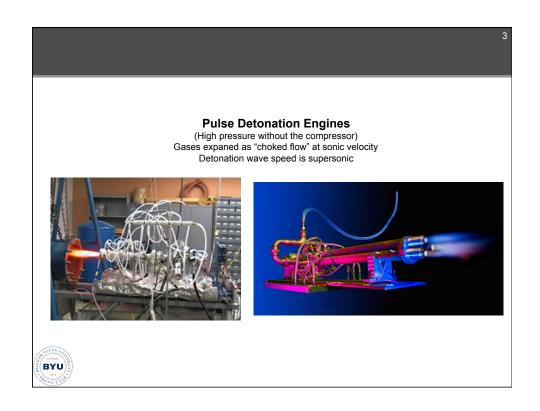
· Find V.

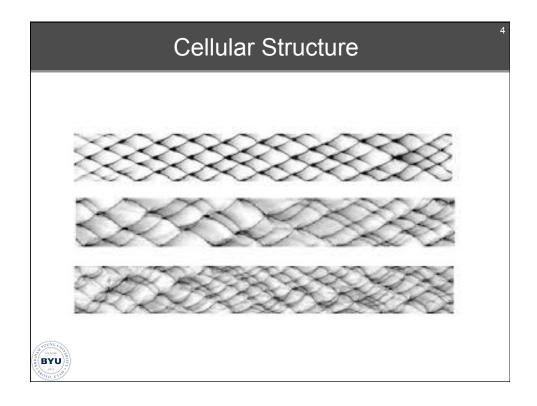
Use Mass, Mon, Energy, IG to Solve in terms of State 1

. Assumes P2 77 P


(som better egns also Giver) (16.26, 16.27)


-- Requires some iteration.


See Slide Comparison.


(Doesn't use our egns I exactly, but close)

See Matlab Code for general Solution.

		Calculated				
	Measured velocity (m/s)	Velocity (m/s)	P ₂ (atm)	T ₂ (K)		
4H ₂ + O ₂	3390	3408	17.77	3439		
2H ₂ + O ₂	2825	2841	18.56	3679		
H ₂ + 3O ₂	1663	1737	14.02	2667		
CH ₄ + O ₂	2528	2639	31.19	3332		
CH ₄ + 1.5 O ₂	2470	2535	31.19	3725		
0.7C ₂ N ₂ + O ₂	2570	2525	45.60	5210		

Fuel–air mixture	Hydrogen–air $\phi = 0.6$		Hydrogen-air $\phi = 1.0$		Propane–air $\phi = 0.6$	
	Tell chie	2	nt Discre	d(2)h)d cr	1 tatio	2
M	4.44	1.00	4.84	1.00	4.64	1.00
и (m/s)	1710	973	1971	1092	1588	906
P (atm)	1.0	12.9	1.0	15.6	1.0	13.8
T (K)	298	2430	298	2947	298	228
ρ/ρ_1	1.00	1.76	1.00	1.80	1.00	1.75
T _{ad} at P ₁ (K)	an passage	1838	ici nilicinoni	2382		170
T _{ad} at P ₂ (K)	test in some	1841	TO CALCUL	2452		170

