

Flameless: MILD C	ess: MILD Combustion	
Moderate or intense low oxygen dilution Quickly mix fuel, air, and recirculated products. – High temperature (but lower than flames), and high dilution. Avoids flame extinction/reignition processes. Lower temperature, distributed reaction Reduce peak flame temperatures Reduce NOx and soot emissions. Higher fuel flexibility	http://www.ifs.tohoku.ac.jp/enerdyn/en/en_researches_hicoL.htm	

Temperature Rise							
C B LACCHON/732/	A WEBCOMC OF ROMANCE, SARCASM, MATH, AND LANGUAGE. UPANTE OVER MONAY, WEDMEDAY, NO FROM.	ARCHIVE What IF? BLAG STORE ABOUT	A WEBCOMIC OF ROMANCE, SARCASM, MATTH, AND LANGUAGE. XICD UPDATES EVENT MODION, WEINESDAY, AND FINDAY.				
A TIMELUNE OF LHEN PEC THESE ARE START 2000 HTC 37 4 Ar THE START OF PARTH IS 17 BOOTON IS BUR THE GLACERST NBUY BOOTON IS FUR THE CALCERST NBUY BOOTON IS FUR THE CALCERST NBUY DY THIS TIME HAR ARE UCCLU	ALAN ALL AND ALL		A.5 DEGREES				

	IPCC—Radiative Forcing								20	
		Emitted compound	Resulting atmospheric drivers	Radi	ative forcin	ig by emiss	ions and o	drivers	Level of confidence	
		se CO ₂	CO ₂					1.68 [1.33 to 2.03]	VH	
		CH ²	CO_2 $H_2O^{str} O_3$ CH_4	l L		i H		0.97 [0.74 to 1.20]	н	
		Halo- carbons	O3 CFCs HCFCs					0.18 [0.01 to 0.35]	н	
		N₂O	N ₂ O					0.17 [0.13 to 0.21]	VH	
	ogenic	co	CO_2 CH_4 O_3	l L	¦ 🕨			0.23 [0.16 to 0.30]	м	
	Anthrop	NMVOC	CO ₂ CH ₄ O ₃		I			0.10 [0.05 to 0.15]	м	
		NO _x	Nitrate CH ₄ O ₃		+			-0.15 [-0.34 to 0.03]	м	
		Aerosols and precursors	Mineral dust Sulphate Nitrate Organic carbon Black carbon		•			-0.27 [-0.77 to 0.23]	н	
		SO ₂ , NH ₃ , Organic carbon and Black carbon)	Cloud adjustments due to aerosols		•			-0.55 [-1.33 to -0.06]	L	
			Albedo change due to land use	-	. ⊢ +			-0.15 [-0.25 to -0.05]	м	
	Natural		Changes in solar irradiance	1	+			0.05 [0.00 to 0.10]	м	
	Total anthronogenic			2011			2.29 [1.13 to 3.33]	н		
		RF relat	ive to 1750		1980			1.25 [0.64 to 1.86]	н	
TOUNG UAL					1950			0.57 [0.29 to 0.85]	M	
-1 0 1 2 3 Radiative forcing relative to 1750 (W m ⁻²)										

