Flameless: HCCI

* Homogeneous charge compression ignition

» Gasoline engine: premixture, compress, then spark ->
premixed flame propagation

» Diesel engine: air, compress, then inject fuel which
autoignites and burns as a nonpremixed flame

* HCCI, premixture compressed to autoignition point,
homogeneous burning
— Usually lean
— Higher compression ratios, lower peak temperatures
— High efficiency, low emissions

» Multi-fuel operation
* Hard to control, cold start issues

Flameless: MILD Combustion

* Moderate or intense low oxygen
dilution

* Quickly mix fuel, air, and recirculated
products.

— High temperature (but lower than
flames), and high dilution.

» Avoids flame extinction/reignition
processes.

* Lower temperature, distributed
reaction

* Reduce peak flame temperatures
+ Reduce NOx and soot emissions.
° ngher fuel ﬂelelllty hitp:/fwww.ifs tohoku.ac. ¥
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U.S. Energy Use
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U.S. Energy Use
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Non-combustion energy sources

J =3~ Solar/PV 1%
- Geothermal 5%

Waste' 6%

* Non-combustion

— Nuclear: 9% Wind 7%

Nuclear Electric

— Hydro: 2.4% Power
W|nd 0 50/ Biofuels* 19%
- . . 0
— Solar: 0.1%
« Non-combustion o '
. . 37% 7% Renewable
sources will continue (1 Energy Wood 28%
to increase, even - '
substantially.
«  Combustion will
remain dominant in
the forseeable future. ‘ Fydroelogtic
34%

http://www.eia.doe.gov/emeu/aer/
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Cubic Mile of Qil

» On an energy basis, the yearly coal, oil, and
natural gas use is 3.0 cubic miles of oil.

* www.eia.gov
» This is 1.6E20 J/year.
» Assume oil/coal/natural gas are converted
to electricity using 34% efficient processes.

» The power to replace 1.6E20 J/year is
1.73E12 Watts.

* 1 CMO replaced by Hydroelectric dams
* 192 Three Gorges Dams (biggest, China)
Build 1 per week for 3.7 years
22,500 MW
+ 3.3 times bigger than the biggest in the U.S.
11 times bigger than the Hoover dam
+ Or 1100 Average size dams
Build 1 per week for 21 years
» 3,932 MW (average size above 2,000 MW)
* There are only 70 plants above 2,000 MW https://en wikipedia.
«  Using 40% capcity factor (average in US)

* 1 CMO replaced by Nuclear power plants
+ 290 Kashiwazaki-Kariwa Plants (biggest, Japan)

Build 1 per week for 5.6 years
* 7,965 MW
« Or 955 Average size plants plants needed

+ Build 1 plant per week for 18 years
2,414 MW (average of plants above 1,000 MW)

* There are only 152 plants above 1,000 MW
Using 75% capacity factor (average in US)

will-restart-next-year-0739191/

https://en.wikipedia.org/wiki/Capacity factor

https://en.wikipedia.org/wiki/List_of largest_hydroelectric_power_stations

https://en.wikipedia.org/wiki/List_of nuclear_power_stations




CMO Replacements

* 1 CMO replaced by Wind Mills
« 3,084,000 average size land-based wind mills
«  Build 1,186 per week for 50 years
*  1.65 MW (typical)
+ 8683 average size land-based wind farms
. 586 MW each (avg size above 250 MW)
« 355WWindmills each at 1.65 MW,
Build 5 farms a week for 33 years
« Typical windmill = Vestas v18- 1.65 MW.
82 diameter, 83 m high tower
« 1,413,400 average size off-shore wind mills
+  Build 544 per week for 50 years
« 3.6 MW (typical)
+ 15,153 average size off-shore wind farms hitps:/iwww.power-
336 MW each (avg size above 200 MW i
93 Windmills each at 36 MW
« Build 5 fams a week for 58 years
«  Typical windmill = Siemens SWT-3.6 3.6
MW. 120 m diameter, 90 m high tower

*  Using 34% capcity factor (average in US)

wind-farm/

*+ 1 CMO replaced by Rooftop solar + https://en.wikipedia.org/wiki/Capacity_factor
+ 6.8 billion solar panels « hitps://en.wikipedia.org/wiki/Wind_farm
« 1 million per day for 19 years 2 kw solar power plan.
* https: Jlen. wikipedia org/wlkl/us( of offshore_wind_farms
+ 2.1 kW panels

+ https://en.wikipedia.org/wikilList of onshore wind farms
« Area=16mz https://www_solarenergypanels.in/solar-power-
Skw-10k 30!

«  Average American uses 1.2 kW*days. - hitps://www eia gov/tools/fags/fag.php?id=076t=3 plants/Tkw-2k
plants

Using 12% capcity factor (average in US) + https://www.solarenergypanels.in/solar-power-plants/1kw-
AT e e S—— W-on-grid-sOlar- POWET-pIants




Combustion Issues

D NATIONALGEOGRAPHIC

The High Cost of Cheap Coal

Coal is plentiful —and polluting. Can an energy-hungry world

afford to wait for this fuel to clean up?

Combustion Issues

https://olsonfarlow.com/portfolios/mountaintop-removal




Emissions

Figure 3-2. Trend in CARBON MONOXIDE Emissions,

i i . 1940 to 1998
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SO2 Emissi
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U.S. coal-fired power plants invested
more than $30bn on scrubbers in four
years

http://www.p 13/03, I-fi

0b)

.htm/
Mar 25,2013

Owners of coal-ired power plants invested more than $30 billon in flue gas desulfurization
systems, also known as scrubbers, between 2007 and 2011, according to a report from
the U.S. Energy Information Administration.

‘According to the report, scrubbers were installed at around 110 coal-ired power plants in 34 states during that time, raising the amount of
scrubbed generating capacity in the U.S. from 115 GW to just more than 191 GW. That number represents a ltle less than 60 percent of
coakfired, steam electric generation capacity in the U.S.

According to the EIA, utiities made the investments in scrubbers in response to several regulatory Initatives, including the U.S.
Environmental Protection Agency's Clean A Interstate Rule.

The increase in installed scrubbers has helped create a reduction of SO2 emissions, which were 68 percent lower in 2011 than the 1990

level and 46 percent lower than the 2007 level. Other factors in that reduction include coal-fired plants burning less coal and switching to a
lower sulfur coal.

. Plant operators in Ohio, Pennsylvania, West Virginia, Maryland and Georgia made 43 percent of the total national investment in scrubbers,
spending a total of $13 billon between 2007 and 2011, according to the EIA. Ohio plants spent more than any other state, making a $3.6
billion investment in scrubbers over that time period.

\\m,“'\\\\/

http://www.panoramio.com/photo/7780554
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IPCC

Intergovernmental panel on climate change.
United Nations
1988

Produce reports
— 5 assessments reports: 1990, 1996, 2001, 2007, 2014

3 working groups
— Physical Science Basis
* Full report = 1552 pages
— Impacts, Adaptation, Vulnerability
* Full report = 1864 pages
— Mitigation of Climate Change
* Full report = 1454 pages

Summary for policy makers (~30 pages)
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Climate Change--IPCC

(a) Northern Hemisphere spring snow cover (c) Change in global average upper ocean heat content
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(b) Arctic summer sea ice extent (d) Global average sea level change
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|IPCC—Radiative Forcing
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Climate Models
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Regulations

* New(ish) CO2 regulations
— EPA March 2012

1000 Ibm CO2 per MW-hr for new coal plants
— Typical plants emit ~1800

— The limits are comparable to Natural Gas
combustion emissions.

« Effectively requires sequestration for new
coal plants.
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