David Lignell
Class 8
Rapid oxidation generating heat, or both light and heat; also, slow oxidation accompanied by relatively little heat and no light
Use \(x\) for mole fraction, \(y\) for mass fraction.
Lump Ar with N\(_2\)
n\(_{N2}\)/n\(_{O2}\) = 3.76
n\(_{air}\)/n\(_{O2}\) = 4.76
species | x | y |
---|---|---|
N\(_2\) | 0.7809 | 0.75532 |
O\(_2\) | 0.2095 | 0.23144 |
Ar | 0.0096 | 0.01324 |
species | x | y |
---|---|---|
N\(_2\) | 0.79 | 0.77 |
O\(_2\) | 0.21 | 0.23 |
M\(_{air}\) = 29 kg/kmol
\[ M = \sum_k x_k M_k,\] \[ M = \frac{1}{\sum_k \frac{y_k}{M_k}}.\]
Convert \(x_k\) to \(y_k\)
\[ x_kM_k = y_kM,\] \[ y_k = \frac{x_kM_k}{M},\] \[ x_k = \frac{y_kM}{M_k}.\]
Air-to-Fuel Ratio \[\frac{A}{F} = \frac{m_{air}}{m_{fuel}}\] \[0\le A/F\le\infty\]
\[\phi = \frac{F/A}{(F/A)_{stoic}}\] mass or mole basis is same
\[0\le\phi\le\infty\]
\(\phi<0\) is lean
\(\phi > 1\) is rich
common in applications
\[\xi = \frac{m_f}{m_f + m_a}\]
\[0\le\xi\le 1\]
Like a mass fraction
\(\xi=0\) is pure air
\(\xi=1\) is pure fuel
common in modeling
Write the stoichiometric reaction for methane combustion
\[CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 7.52N_2\]
What is \(m_f/m_a\)?
\[m_f/m_a = M_{CH4} / (2*4.76*M_{air}) = 16/(9.52*29) = 0.058\]
5.8% of mass is fuel.
Try out \(C_xH_y\)
\[C_xH_y + \left(x + \frac{y}{4}\right)O_2 + 3.76\left(x+\frac{y}{4}\right)N_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + 3.76\left(x+\frac{y}{4}\right)N_2\]
\[C_xH_y + \left(x + \frac{y}{4}\right) + 3.76\left(x+\frac{y}{4}\right)N_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + 3.76\left(x+\frac{y}{4}\right)N_2\]
Rich
Write the rich reaction in terms of \(\phi\)
\[\phi C_xH_y + \left(x+\frac{y}{4}\right)O_2 + 3.76\left(x+\frac{y}{4}\right)N_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + 3.76\left(x+\frac{y}{4}\right)N_2 + (\phi-1)C_xH_y\]
Lean
Write the lean reaction in terms of the fractional excess air \(E\)
\[C_xH_y + (1+E)\left(x+\frac{y}{4}\right)(O_2 + 3.76 N_2) \rightarrow xCO_2 + \frac{y}{2}H_2O + E\left(x+\frac{y}{4}\right)O_2 + (1+E)3.76\left(x+\frac{y}{4}\right)N_2\]
What is the temperature of a flame?
Formulate a relation to allow calculation of \(T_{ad}\)
Adiabatic \(\rightarrow\) \(h_\text{reactants} = h_\text{products}\)
\[h = h(T, y_i)\] \[h = \underbrace{h_f(T_\text{ref}, y_i)}_{\sum_iy_ih_{f,i}(T_\text{ref})} + \int_{T_\text{ref}}^T\underbrace{c_p(T,y_i)}_{\sum_iy_ic_{p,i}(T)}dT\]
Then, \(h_\text{reactants} = h_\text{products}\) is one equation in one unknown \(T_\text{products}\equiv T_{ad}\)
\(c_{p,i}(T)\) is typically given as a polynomial in \(T\), in two temperature ranges