## Chemical Engineering 374

## Fluid Mechanics <br> Fall 2013

## Bernoulli Equation

"Generation"
Accumulation
Out
In
$\frac{d Q}{d t}+\frac{d W_{s}}{d t}=\frac{d}{d t}[\underbrace{\rho\left(u+\frac{1}{2} v^{2}+g z\right) V}_{\mathrm{e}}+[\rho v A(u+\underbrace{\left.\left.\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)\right]_{\text {out }}-[]_{\text {in }}}_{\mathrm{e}_{\text {mech }}}$
Can rearrange to familiar (Accumulation) = (In) - (Out) + ("Generation")

Simplify

- Steady State
- Ws = 0
- $Q=0$
- No friction (viscous effects)
- This and no Q give const. u
- Incompressible $\rightarrow$ constant density

BYU

$$
\begin{aligned}
& \left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)_{i n}=\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)_{o u t} \\
& \text { Or } \\
& \Delta\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)=0
\end{aligned}
$$

$e_{\text {mech }}$ is conserved



- Consider streamlines, then mechanical energy on a streamline is constant.
- Can derive the Bernoulli equation by making the same set of assumptions and "dot" the momentum equation (force balance equation, not covered yet) with displacement along a streamline.
- Cengel and Boles give a simpler derivation in terms of Newton's Second Law (force balance), again along a streamline.
- Other forms of Bernoulli' s equation exist
- Unsteady
- Compressible
- As usual, back up in the derivation when making assumptions.


## Bernoulli Equation and Pressure

$$
\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)=C
$$

## Units

$$
\begin{aligned}
& \frac{P}{\rho}(=) \frac{N}{\mathrm{~m}^{2} \cdot \mathrm{~kg} / \mathrm{m}^{3}}(=) \frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg} / \mathrm{m}^{3}}(=) \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \\
& \quad(=) \frac{\mathrm{J}}{\mathrm{~kg}}(=) \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

B.E. units are energy per unit mass

But since the mechanical energy is constant, can multiply through by density to give units of pressure.


## Application

- You are an airplane.
- Measure your velocity.
- How?

- Apply Bernoulli Equation $\left(\frac{P}{\rho}+\frac{1}{2^{2}}+g z\right)_{1}=\left(\frac{P}{\rho}+\frac{1}{2^{2}}+g z\right)$,
- You have a bunch of variables
- One is unknown.
- The rest are either: known, measured, controlled
- You have a constraint, what is it?



## Pitot Tube

|  |  |
| :--- | :--- |
| Point 1 <br> $\mathrm{~V}_{\text {airplane }}$ | Point 2 <br> $\mathrm{P}_{1}$ |
| $\mathrm{v}=?$ |  |
| $\mathrm{P}_{2}$ |  |

- Note the correlation between points and the device.
- Note the streamline.
- Note the control over $\mathrm{v}_{2}$
- What is the principle: how does it work?


## Velocity Measurement

- Velocity measurement
- Total pressure is constant along a streamline
- Measure pressure at two points on the same streamline
- Where the velocity is desired
- At a point where the velocity has stagnated
- $P_{\text {stagnation }}=P_{\text {static }}+P_{\text {dynamic }}$
- Stagnation pressure is the pressure to bring the fluid to zero velocity without friction.

$$
\begin{aligned}
\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)_{1} & =\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)_{2} \\
\left(P+\frac{1}{2} \rho v^{2}\right)_{1} & =\left(P+\frac{1}{2} \rho v^{2}\right)_{2} \quad \square
\end{aligned}
$$

## How to measure $\mathrm{P}_{2}-\mathrm{P}_{1}$

$$
P_{2}-P_{1}=\rho g h
$$

- Use a manometer,
- Or a pressure transducer, etc.
- Note, the real device is not laid out like this, but is analysed like this.



## Velocity Measurement

- Problem solving with the Bernoulli equation amounts to:
- Splitting configuration into points, evaluating $P, v, h$ at one point and two of $P, v, h$ at the other, and solving for the unknown with B.E.
- Countless examples, all boil down to this.
- Often involve multiple applications $\rightarrow$ two B.E. in two unknowns.
- Real flows are not ideal, and have friction losses.
- Friction results in a variation in internal energy (u).
- Rather than include $\Delta \mathrm{u}$, include a friction loss term $F$
- For constant height and velocity, friction causes pressure drop.
- Bigger fans, pumps, turbines needed for the same flow!
- Minimize the pressure drop (friction).

$$
\Delta\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)=0 \quad \Longrightarrow \quad \Delta\left(\frac{P}{\rho}+\frac{1}{2} v^{2}+g z\right)=-F
$$



## Windbox Pressure Drop



## Windbox Pressure Profile



## Total Pressure

- Total pressure is the pressure that would be achieved if flow velocity were brought to zero without friction.
- Total pressure gives an indication of pressure losses through the unit.
- Small gradients are desired, large gradients indicate large pressure losses.



