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Chemical Engineering 374 
 

Fluid Mechanics 
Fall 2011 

Integral Energy Balance 
 

In this house, we obey the laws of 
thermodynamics! 

–  Homer Simpson 
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Integral Energy Balance 

•  Recall, we are writing balance equations. 
–  Fluid Statics (no flow) 
–  Mass Balance (last time) 
–  Energy Balance (today) 
–  Momentum Balance (later) 
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Reynolds Transport Theorem 

dBsys

dt
=

d

dt

�

CV
�bdV +

�

CS
�b⇥v · ⇥ndA

System of fixed 
Mass (closed system) Control Volume: Some (usually fixed) region of space 
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Energy of the system: Internal, Kinetic, Potential 

E = U +
1
2
mv2 + mgz

Conservation law for our system?  

dE

dt
=

dQ

dt
+

dW

dt

RTT à Bsys = E, b = e 

�edV �e⇥v · ⇥ndA
Volumetric energy Energy flux 

dQ

dt
+

dW

dt
=

d

dt

�

CV
�(u +

1
2
v2 + gz)dV +

�

CS
�(u +

1
2
v2 + gz)⇥v · ⇥ndA

e = u +
1
2
v2 + gz

1st Law of thermodynamics 
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Consider Uniform Properties within a control volum, and Uniform Velocities 

ṁ

dQ

dt
+

dW

dt
=

d

dt

�
�(u +

1
2
v2 + gz)V

⇥
+

�
�vA(u +

1
2
v2 + gz)

⇥

out

�
�
�vA(u +

1
2
v2 + gz)

⇥

in

Pressure is buried in the work term 
dW

dt
: dW = �F · d�x

Forces at the Surface 
 Wp – Pressure forces (stress) 
 Wv – Viscous stresses (usually ignore as small) 

Forces internal to the system 
 Ws – Shaft work (pump, turbine) 
 Wo – Other (electric, magnetic, surface tension) 
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Ws is left as is à either specified directly, or computed 
 Positive when work is done on the system 
 Negative when system does work on surroundings 

 

Wp is pressure work, or work to deform the boundary of the SYSTEM 

dW = Fdx = PAdx

dW

dt
= PA

dx

dt
= PAv

dW

dx
= �

�

CS
P⇥v · ⇥ndA = �

�

CS

P

�
�⇥v · ⇥ndA

Consider piston compression 

General control volume • P/ρ (=) energy per mass 
• Note the negative sign 
• This work is the rate of energy flux across the system surface 
•      associated with pressure work (deformation). 
• This is the rate of energy needed to move the fluid (to move the system) 

dt 
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dQ

dt
+

dWs

dt
�

�

CS

P

�
�⇥v · ⇥ndA =

d

dt

�

CV
�(u +

1
2
v2 + gz)dV +

�

CS
�(u +

1
2
v2 + gz)⇥v · ⇥ndA
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• Move term to RHS 
• Assume uniform properties 

dQ

dt
+

dWs

dt
=

d

dt

�
�(u +

1
2
v2 + gz)V

⇥
+

�
�vA(u +

P

�
+

1
2
v2 + gz)

⇥

out

� []in

• Multiple streams need multiple terms 
• u+P/ρ = h = u+Pv 
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Simplify 
• Steady State 
• Q=0 (no heat transfer) 
• Constant mass flow 
• Constant internal energy (no friction, ΔT, Q) 

= ṁ�emech = �Ėmech

dQ

dt
+

dWs

dt
=

d

dt

�
�(u +

1
2
v2 + gz)V

⇥
+

�
�vA(u +

P

�
+

1
2
v2 + gz)

⇥

out

� []in

• Shaft work converted to mechanical energy. 
• Mechanical energy is the energy that can be directly converted to mechanical work. 
• Ideal, no losses (friction/heat) 
• Real systems have losses 
• Convenient to consider the ideal case with some efficiency: known or compute. 

dWs

dt
=

�
�vA(

P

�
+

1
2
v2 + gz)

⇥

out

�
�
�vA(

P

�
+

1
2
v2 + gz)

⇥

in

emech 
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� =
Emech, real

Emech, ideal

�pump =
�Emech

Wshaft

�turbine =
Wshaft

�Emech

• Efficiency is positive, so use absolute values if needed. 
• Pump/motor, turbine/motor à product of efficiencies 

Example 1 
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Frictionless, Steady, Vertical Pipe Flow 1 
1 

2 

dQ

dt
+

dWs

dt
=

d

dt

�
�(u +

1
2
v2 + gz)V

⇥
+

�
�vA(u +

P

�
+

1
2
v2 + gz)

⇥

out

� []in

0 0 0 

Δu? 
Δv? 

 Δm? 
 
 

✓
P

⇢
+ gz

◆

out

=
✓

P

⇢
+ gz

◆

in

(P2 � P1) = �⇢g(z2 � z1) = ⇢gh Our old friend! 
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Example 2 

•  Pump liquid through a steady, frictionless nozzle 
–  Nozzle, so A1 not equal to A2 

•  Not open to the atmosphere (pipe continues in both directions 
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1 

2 

Δz 

dQ

dt
+

dWs

dt
=

d

dt

�
�(u +

1
2
v2 + gz)V

⇥
+

�
�vA(u +

P

�
+

1
2
v2 + gz)

⇥

out

� []in

0 0 Δu? 
Δv? 

 Δm? 
 
 Ẇp

ṁ
=

P2 � P1

⇢
+

v2
2 � v2

1

2
+ g(z2 � z1)

What if ends open to the atmosphere? 
What if the inlet and outlet pipes are the same size? 


