

	Class 26—Differential Balances
•	Mass Balance $\partial \rho \\ \partial t + \nabla \cdot (\rho \vec{v}) = 0$ $\nabla \cdot \vec{v} = 0$ Derived from the RTT $\partial \rho \\ \partial t + \nabla \cdot (\rho \vec{v}) = 0$ $\nabla \cdot \vec{v} = 0$ Continuity Equation-Used as a constraint for velocity-Book/handouts give expanded forms for Cartesian, Cylindrical, Spherical coordinatesIncompressible (const ρ) means rate in = rate outIf rate in = is not rate out then the density is changing.Momentum equation: just a differential force balance-(accum) = (in)-(out) + (body and surface forces)-Book/handouts give expanded forms in three coordinates-Again, use to find velocity field or pressure field.
BYU MICHANG CLARKER BYU MICHANG CLARKER MICHANG CLARK	

Class 27—Navier-Stokes Equations

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \vec{v} + \vec{g}$$

- Incompressible, Newtonian, vector
- The equations look scary, but we seriously simplify them
 Know how to drop out terms:
- Solution procedure:
 - Is it steady? (usually, here), is it compressible (no, usually here const ρ), is it 1-D? (yes, usually here).
 - 1D \rightarrow one momentum equation (one component of the vector expression).
 - 1D → maybe vary in y direction, but may have only u_x velocity (still 1-D)
 Use only x-momentum, but varies in y-direction.
 - Solve for a velocity component OR...
 - Given a velocity field, can solve for the pressure field.
- · Boundary conditions

BYU

- Velocity (mass flow) given at some point (inflow/outflow)
- Velocity zero at walls.
- Symmetry (like at centerlines) \rightarrow velocity gradients are zero.
- Air/liquid interface \rightarrow no shear \rightarrow velocity gradient zero.

	Class 28—Boundary Layers
•	 Mostly conceptual here. Euler equations (Navier-Stokes without viscosity) far from walls. Boundary layer equations near walls (Simplified Navier-Stokes equations).
•	 Boundary Layer results. Boundary layers have two length scales (length along the plate, and thickness). Boundary layers are very thin compared to length. (So Euler equations solved ignoring BL thickness) Thin, relatively parallel streamlines imply no pressure gradient normal to the plate. (Then the pressure gradient along the plate is that in the free stream (=0 for flat plate BL). Navier-stokes (or x-mom) told us there are two length scales. Continuity told us the scaling for v-velocity. Y-momentum told us there is no pressure gradient normal to the plate. X-momentum then lost a viscous term (du/dx), and dp/dx written in terms of dU/dx with Bern. Eq.
•	Transition for laminar and turbulent Reynolds numbers (5E5 is the engineering cutoff).
HULMC (A) HULMC	BL grows with distance, Re grows with distance → becomes turbulent. Shear stress decreases with distance. Turbulent shear > laminar shear. RECALL HOW WE USE THESE FACTS, remember the 2 plate direction prob.

Class 29—External Flow

- Lift, Drag, Drag Coefficient.
- Drag is emphasized and is the net force in flow direction.
 - Pressure forces (form drag)
 Flow separation
 - Viscous forces (friction drag)
 - Streamlining reduces pressure drag, but increases friction drag, but usually, pressure drag dominates.
- $F = C_d \rho v^2 A/2$

BYU

- A is the projected area, or the planview area
- Use Table 11-1, 11-2 (given on exam if needed)
- If v is unknown, guess laminar or turbulent → Cd → v → Re → confirm or adjust Cd. (Tables → only one try needed)
- For small particles guess laminar, for big objects, guess turbulent.
- Terminal velocity follows from a force balance. Object falls under gravity until forces balance: buoyant, weight, drag

Class 31—Pump Scaling

- Series and Parallel
- Series, increase head for given flow.
 - PPC is sum (vertically) of individual pumps PPC
 - Don't operate beyond Free Delivery Flow for smallest pump, or shutoff/bypass that pump.
 - Can act as a head loss above the free delivery flow.
 - Know how the series pumps work with respect to a system demand curve
- · Parallel, increase flow for given head.
 - PPC is sum (horizontally) of individual pumps PPC.
 - Don't operate beynod the shutoff head for the smallest pump, or bypass that pump.
 - Backflow above the shutoff head.
 - Each pump operates on its own PPC, but combined system operates on the compined PPC.
 - But the head over each pump is equal \rightarrow provides a link (horizontal line on PPC) between
 - individual and combined PPC
 - Again, know how this works on a system curve
- Scaling:

BYU

- $\quad C_{\text{H}}, \text{ } C_{\text{P}}, \eta \text{ = } \text{f}(\text{C}_{\text{Q}}, \text{ Re}, \epsilon/\text{D}) \text{ } \text{ } \text{-} \text{f}(\text{C}_{\text{Q}}). \text{ } \text{gH}, \text{bhp}, \eta \text{ = } \text{f}(\text{D}, \text{Q}, \omega, \rho, \mu, \epsilon)$
- To scale, as usual, match these groups. Often, keeping one or several parameters const $\rightarrow \! simplifies$ the problem.
- Choose pumps based on value of N_{sp}
- if you were given a set of requirements, know how to compute Nsp and choose a pump or turbine.

Class 32—Turbines	10
Types: Hydraulic, wind, steam, gas, etc. Positive displacement, Dynamic Dynamic - Impulse (Pelton Wheel) - Reaction (like inverse pump) Pelton Wheel Analysed using momentum balance Reaction turbines: - Francis (Radial/mixed flow) - Kaplan (Axial flow) $\eta = 1/\eta_{pump}$ Wind turbine - Work available, $\eta=C_p < 0.59$ (more like 0.45) Scaling laws are like pumps: C_H , C_Q , C_p , η Take C_P as independent parameter Turbine selection, based on N _{sp} .	