
ChE 374–Lecture 32–Turbines

- Pumps add mechanical Energy to increase the fluid head. Turbines EXTRACT mechanical energy at the expense of fluid head (decreased pressure).
- Turbine types:
 - Hydraulic, wind, steam, gas.
 - Typically more efficient than pumps (larger, less separation, lower speed, narrower operating range).
- 2 Types: Positive displacement (for flow measurement), and DYNAMIC (our focus, for power production).
 - Dynamic: pumps have *impellers*, turbines have *runners*.
 - * 2 types: Impulse and Reaction.
- Impules turbines (Pelton Wheel)
 - High Head, Low Flow.
 - Fluid through nozzle, deflected in a wheel of buckets. Pressure is converted to kinetic energy, that impinges on and rotates the bucket wheel.
 - Analyse with a momentum balance.
 - * Optimal redirection angle is 180° in theory, and 160° as a practical compromise.
 - * Optimal bucket speed is $u = V_j/3$, where V_j is the jet velocity. (Book says its $u = V_j/2$).
 - * Efficiencies up to 90%
- Reaction Turbines.
 - As for pumps, have Centrifugal, Mixed Flow, and Axial.
 - 2 Types: Fracis and Kaplan
 - * Francis: Radial and Mixed Flow: Med. Head and Med. Flow.
 - * Kaplan: Axial Flow (propeller with variable pitch): Low Head, High Flow.
 - * $\eta = bhp/\rho g H \dot{V}$.
- Wind Turbines:
 - $-\dot{W}_{\text{avail}} = \text{K.E. x flow rate} = \frac{1}{2}v^2\dot{m} = \frac{1}{2}\rho v^3 A.$
 - * Power \propto A, Power $\propto v^3$.
 - $-\eta = C_p = \dot{W}/\dot{W}_{\text{avail}}.$
 - * Show with momentum balance and B.E. that $C_{p,\text{max}} = 16/27 = 0.5926$.
 - $\cdot\,$ This is the best possible, and the best in practice is around 0.45.
- Scaling laws are similiar as for pumps: C_H , C_Q , C_p , η , but use C_p , not C_Q as the independent parameter.
- Choose turbine type based on the Turbine specific speed N_{st} .
 - Impulse for $N_{st} < 0.3$
 - Francis for $N_{st} = 0.3 2$
 - Kaplan for $N_{st} > 2$
 - CAREFUL OF THE UNITS

Lecture 32 - Twilines.

Pelton wheel Analysis.

· Goove in bucked to allow Passage of jet.

2

X-momentum

$$V_{in} = V_j - u$$

$$V_{out} = V_{in} \cos\beta = (V_j - u)\cos\beta$$

$$\dot{m}_j = \rho A V_j - A = \dot{m}_j / \rho V_j$$

$$\dot{m}_r = \rho A (V_j - u)$$

$$\Rightarrow \dot{m}_r = \dot{m}_j (1 - \frac{u}{V_j})$$

Insent

*

*

$$F = m_{1}(1-\frac{u}{V_{1}})(V_{1}-u)(\cos\beta-1)$$

$$F = m_{1}(1-\frac{u}{V_{1}})(V_{1}-u)(1-\cos\beta)$$

$$\tilde{W} = Fu = m_{1}u(1-\frac{u}{V_{1}})(V_{1}-u)(1-\cos\beta)$$

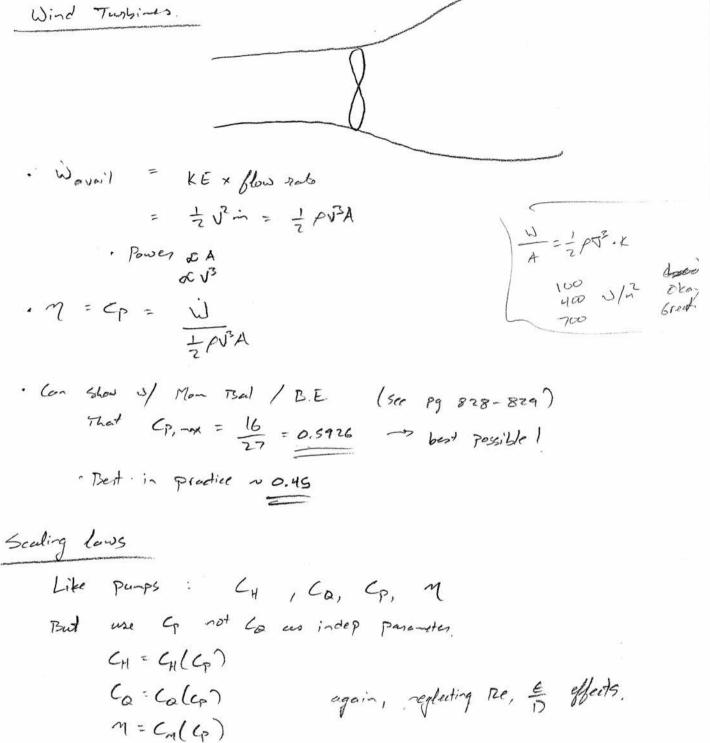
U

Optimal B:
$$\frac{dW}{dB} = 0 = \sin \beta$$
 --- $\beta = 0^{\circ} ol \left[\beta = 180^{\circ} \right]$
- in practice $\beta \sim 160^{\circ}$ othwise hit back of bucket.
- This is some result as in mon Balance.
higher force when Deflect 180°

Optimed a:

$$\frac{dW}{du} = 0 = \frac{d}{dt} \left(\frac{d}{dt} - \frac{d}{dt} \right) \left[\frac{d}{dt} - \frac{d}{dt} + \frac{d}{dt} \right]$$

$$\frac{d}{dt} = 0 = \frac{d}{dt} \left(\frac{d}{dt} - \frac{d}{dt} \right) \left[\frac{d}{dt} - \frac{d}{dt} + \frac{d}{dt} \right]$$


$$\frac{d}{dt} = 0 = \frac{d}{dt} + \frac{d}{dt} + \frac{d}{dt} = 0 = -\frac{d}{dt} + \frac{d}{dt} + \frac{d}{dt} = \frac{d}{dt} + \frac{d}{dt} = 0$$

$$\frac{d}{dt} = 0$$

$$\frac{d}{dt} = \frac{d}{dt} + \frac{d}{dt} = 0$$

$$\frac{d}{dt} = 0$$

$$\frac{d}{dt$$

X

 \bigcirc

Choosing Fund in Turbine Types
Specific speed

$$\frac{P_{2}-p_{1}}{P_{2}-p_{2}}$$

 $\frac{F_{0}}{F_{0}}$
 $\frac{F_{0}}$

Tuppines Net

European version two