Chemical Engineering 374

Fluid Mechanics

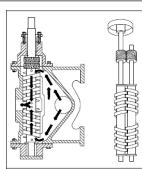
Pumps

1

Overview

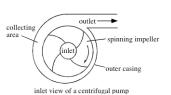
- Pumps/Turbines
 - Chp 14.1-14.2 (today), 14.2-14.3 (Wed.) 14.4-14-5 (Friday)
- Pumps
 - Add energy to fluid (increase pressure, not speed)
- Liquids → pumps
- Gases

Fans: Low ΔP, High Flow, < ~ 1 psi
 Blowers: Med ΔP, Med Flow, < ~ 40 psi
 Compressors: High ΔP, Low Flow, >~ 40 psi


- Pumps
 - Positive displacement
 - Dynamic

Positive Displacement Pumps

- Displace fluid by moving parts with low clearance
 - Piston/cylinder
 - Turning gears
 - Screws
- Lower flow rates
 - < 1000 gpm
- · Self priming
- High pressures (> 500 psi)
 - Need safety devices
- High viscosity fluids
 - Oil, foods
- Pulsating flow, hard to control flow rate



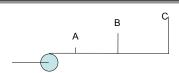
Centrifugal Pumps

- Centripetal forces accelerate fluid and increase pressure.
- Flow enters axially and is accelerated to the outside where pressure rises.
- High flow rates (> 300,000 gpm)
- · Large gaps
- Lower pressures (relative) ~100 psi
- Not self priming
- The industry standard for moving gases and liquids.
 - If it's a pump, its probably a centrifugal pump

Performance Parameters

- · Brake Horsepower
 - Shaft work
 - Work supplied to the pump
 - Some is lost → inefficiency
- Water Horsepower
 - mgH is the work imparted to fluid across the pump
- Efficiency
- Inefficiency
 - Leakage of fluid between spaces
 - Fluid friction in pump
 - Mechanical friction in pump
 - Does not include the motor

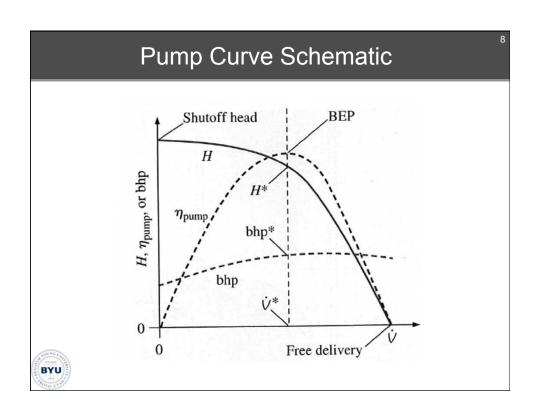
$$H = \left(\frac{P}{\rho g} + \frac{v^2}{2g} + z\right)_{out} - \left(\frac{P}{\rho g} + \frac{v^2}{2g} + z\right)_{in}$$


$$H = \frac{\Delta P}{\rho g}$$

$$\eta = \frac{\dot{W}_{water\,HP}}{\dot{W}_{shaft}} = \frac{\dot{W}_{water\,HP}}{bhp} = \frac{\rho g Q H}{bhp}$$

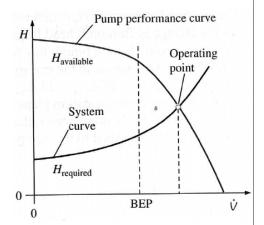
Pump Performance

- Most pumps are on or off
- Consider pump to three elevations A, B, C
- · Pump head lifts fluid
- · Ignore any pipe losses
- **A:** Pump just "throws" fluid, but H=0
 - W = ρ *g*H* ν
- **B:** Start elevating, flow rate drops and head increases
- **C:** At some point flow stops and head is maximum

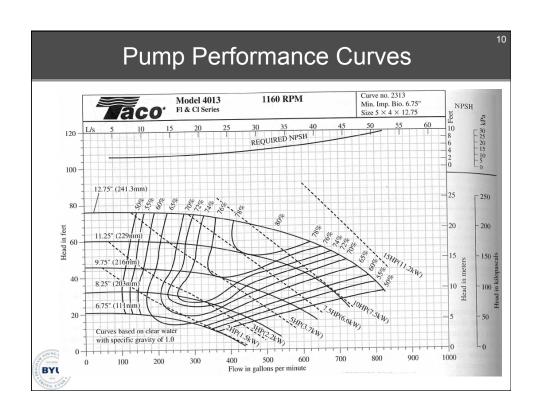


	ν	н	W	eff
Α	High	0	0	0
В	Med	Med	Med	High
С	0	High	0	0

- Note, head increases over the pump, then drops over the load.
- Load can be KE or elevation, or loss or pressure.
- · Could think of this as



Pump Operation Curves

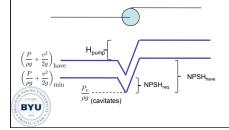

Piping system requires a given V and a given H.

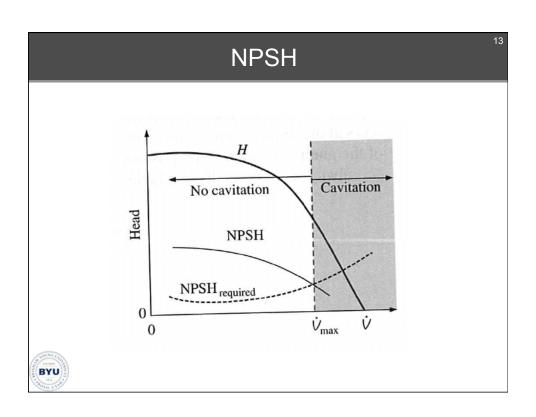
$$H_{req} = \frac{P_2 - P_1}{\rho g} + \frac{v_2^2 - v_1^2}{2g} + \left(z_2 - z_1\right) + H_{loss}$$

- H_{loss} is friction and minor losses, etc.
- Pump has a corresponding V and H.
- These must match, forming the operating point.
 - This may not be the best efficiency.
- Select a pump so that the best efficiency point (BEP) occurs at the operating point.
- · Generally oversize the pump a bit
 - higher flow for given H_{req}
 - or Higher H_{avail} for given flow
 - − Add a valve after pump \rightarrow raises H_{req} to match H_{avail} for given flow
 - Somewhat wasteful, but offers control.
 - Also may increase efficieny. (But higher efficieny may not compensate for extra work wasted in the valve (see example 14.2)

Cavitation

- Pressures inside pumps can decrease locally in some spots (like the low pressure side of a blade)
- Recall flow separation and wakes
- Cavitation causes local boiling, bubble collapse.
 - Think of th pinging you hear when water bubble start to form on the stove.
 - Causes erosion and pitting of blades.




Net Positive Suction Head (NPSH)

$$\text{NPSH} = \left(\frac{P}{\rho g} + \frac{v^2}{2g}\right)_{\text{pump inlet}} - \frac{P_v}{\rho g}$$

- · Think of NPSH as the pressure drop inside the pump.
 - If pump NPSH is 10, then you need $\left(\frac{P}{\rho g} + \frac{v^2}{2g}\right)_{\text{pump inlet}} \frac{P_v}{\rho g}$ at the pump inlet to be more than 10.
- NPSH_{req} is specified for a given pump. Operate ABOVE it.
- NPSH_{reg} increases with flow rate (higher flow, more cavitation tendency.
- · NPSH of the operating system decreases with increasing flow.
 - Higher flow means more pressure drop means lower pressure at the pump inlet, means lower NPSH.

- Locate pumps down low (below tanks and columns. (To maximize P)
- Lower temperature is better (lower P_v)
- As increase T, and/or Flow rate, watch out for cavitation!

Example:

 $\frac{P_1}{eg} + \frac{V_1^2}{2g} + Z_1 - h_2 = \frac{P_2}{pg} + \frac{V_2^2}{2g} + Z_2$

To get (NPSH) have: at Point (2)

* Py from Both Sides

 $\frac{P_1}{eg} + \frac{V_1^2}{2g} + Z_1 - L_2 = \left(\frac{P_2}{eg} + \frac{V_2^2}{2g} - \frac{P^{\vee}}{eg}\right) + Z_2$ $\frac{P_2}{eg} + \frac{V_1^2}{2g} + \frac{P^{\vee}}{2g} + \frac{P^{\vee}}{2g} + \frac{P^{\vee}}{2g}$ $\frac{P_2}{eg} + \frac{V_2^2}{2g} - \frac{P^{\vee}}{eg} + \frac{P^{\vee}}{2g}$ $\frac{P_3}{eg} + \frac{P^{\vee}}{2g} + \frac{P^{\vee}}{2g} + \frac{P^{\vee}}{2g} + \frac{P^{\vee}}{2g}$ $\frac{P_2}{eg} + \frac{P^{\vee}}{2g} + \frac{P^{\vee}}{$

That is, group terms in the energy egon to get NPSH

-> (NPSH) have: P1 + V2 + Z1 - Z2 - PV - h2

If have a Pump Curve, Then Can Plad (NPSH) have US V and operate where (NPSH) have > (NPSH) pump

If have a correlation for (NPSH) pump versus is, Then
Set (NPSH) _ = (NPSH) pump - Solve for is

Remember, NPSH is like a Scaled inlet Pressure: Higher
P avoids Cavidation. Operate So as to maximize NPSH.