ChE 374–Lecture 28–Boundary Layers

- Navier-Stokes Equations:
 - Complex: PDE, 3D, unsteady, nonlinear, 4 equations.
 - Solve by simplifying: Inviscid, laminar, reduce dimensions, steady state.
- Boundary Layer Method.
 - Split flow into two regions that are matched at the interface:
 - 1 An outer region that is inviscid. Solve the resulting Euler Equations.
 - \cdot Many analytic solutions exist (especially in 2D) for complex geometries.
 - $\cdot\,$ But does not apply near walls.
 - 2 An inner boundary layer region in reduced dimensions and simplified by dropping terms.
- Boundary layer region.
 - No gravity, 2D, Steady state, thin.
 - Scale the governing equations to determine properties of the flow and the boundary layer equations:
- Navier-Stokes equations (SS, no gravity), scale x, y with just L, \vec{v} with U, and P with ρU^2 :
 - $\vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla P + \mu \nabla^2 \vec{v}$. Scale it to get: $(\vec{v} \cdot \nabla \vec{v})^* = (\nabla P)^* + \frac{1}{Re} (\nabla^2 \vec{v})^*$.
 - High Re gives no viscous term which makes no sense. Instead, we need two scales, L and δ , the boundary layer thickness.
 - KEY RESULT: Need two scales, L and δ , boundary layers are thin.

• Continuity:
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
, scale to $(\frac{\partial u}{\partial x})^* + \frac{v_{ref}L}{\delta U}(\frac{\partial v}{\partial y})^* = 0$

- KEY RESULT: $v_{ref} = U\delta/L$, and $v_{ref} \ll U$.
- Y-Momentum: $u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial P}{\partial y} + v\frac{\partial^2 v}{\partial x^2} + v\frac{\partial^2 v}{\partial y^2}.$

scaled: $\left(u\frac{\partial v}{\partial x}\right)^* + \left(v\frac{\partial v}{\partial y}\right)^* = -\frac{L^2}{\delta^2} \left(\frac{\partial P}{\partial y}\right)^* + \frac{1}{Re} \left(\frac{\partial^2 v}{\partial x^2}\right)^* + \frac{L^2}{\delta^2 Re} \left(\frac{\partial^2 v}{\partial y^2}\right)^*.$

- KEY RESULT: $\frac{\partial P}{\partial y} = 0$. (Pressure can vary along the length, but not through the boundary layer thickness). This is because the boundary layer is thin and the streamlines are nearly parallel.
- X-Momentum:

•

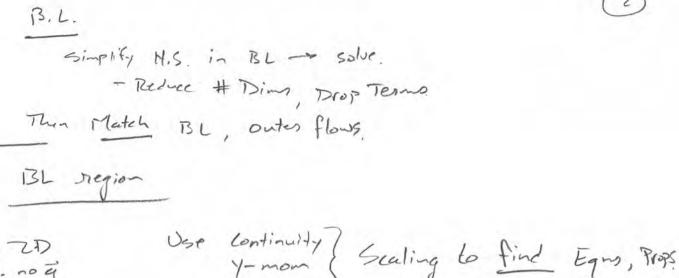
$$u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial P}{\partial x} + \nu\frac{\partial^2 u}{\partial y^2}.$$

- This and continuity are the laminar boundary layer equations.
- KEY RESULT: ignore the $\frac{\partial^2 u}{\partial x^2}$ term (that is, we ignore diffusion of momentum in the downstream direction).
- Note: $-\frac{1}{a}\frac{\partial P}{\partial x} = U\frac{dU}{dx}$. (Just differentiate
- Solution proceedure: Solve U(x) for outer flow using Inviscid equations; Solve Boundary layer equations given U(x); Solve for wall stress, drag, etc. Bernoulli equation with respect to x).
- SEE POSTED SOLUTION OF THESE EQUATIONS FOR REFERENCE (not required).
- Boundary Layers apply to balls, wings, jets, wakes, mixing layers.
- As for pipe flow, we have laminar, transitional, and turbulent.
- Take $Re = 5 \times 10^5$ as the cutoff between laminar and turbulent.
- Shear stress decreases with distance for laminar and turbulent, but wall stress (friction) is greater for turbulent than for laminar.

Class 28 - Boundary Layers: 10.6

0

Previously - N.S. Eque.
- Complex PDE, 3-D, time, nonlineas
Solve N.S. By Simplifyly.
- invited
- Laminan
- Reduce Dimensions
- 55.
To Solve for real flows with al complications.
(D) CFD
- Hand to date
- Hand to date
- Has Assumptions
- Long Soldin time.
(D) Boundary Layes approach
- More assumptions
- Foster Solution time.
B.L. Approach
Consider flow over a wing
. Want Dag, Lift
. need N, P
Instead of Solving N.S., Simplify
. Away from wing, no slip - 2 and fell
. New Wing, Thin B.L. Develop
Conder: Theorem (BE) holds, no M - Ender Gree
(
$$\frac{GV}{2E}$$
) + $\frac{V}{V \cdot VV} = -\frac{1}{2} VP + \frac{1}{2}$
. Many Analytic Solutions]



() N.S.
$$\vec{v} \cdot \vec{v} = -\frac{1}{p} \nabla p + \mu \nabla \vec{v}$$

If scale x, y with L, \vec{v} with U, p with $p = 0^2$
 $\rightarrow (\vec{v} \cdot \vec{v} \cdot \vec{v}) = (\nabla p) + \frac{1}{p_e} (\nabla^2 \cdot \vec{v} \cdot)$
High $p_{ee} = no C$
 $Visc. Term$
 $Visc. Term$
 $Term$) ???
 $\rightarrow Nred 2 Scales, L, S$
(2) Continuity: $\frac{2u}{7x} + \frac{2v}{2y} = 0$
Scales $(2u') + [\frac{v_h L}{5v}](\frac{2v'}{2y'}) = 0$
 $(2u') + [\frac{v_h L}{5v}](\frac{2v'}{2y'}) = 0$
 $\nabla w w V_{hef}$
 $\rightarrow [V_h = US/L]$, $V_h < U$

