

Exam Review,	By Content/Lectures
 Classes 13-21 Chapter 5.6 Chapter 7.1-7.5 Chapter 8.1-8.8 Laminar Laminar Turbulent Minor Losses Single Pipelines Pipe networks Flow measurement 	Mechanical Energy Dimensional Analysis Pipe Flows

Class 16—Laminar Pipe Flow	6
 Pipe discussion More on the Re (physical intuition: force ratio, timescale ratio) Re < 2300 is laminar; Re > 4000 is turbulent (transition in between) 2300 is the number to remember as the laminar/turbulent cutoff Most flows are turbulent Hydraulic diameter (for noncircular pipes) D_h=4A_c/P_w Entrance region Fully developed flow takes time/space Wall stress/friction/pressure drop is higher in entrance region. Derive the velocity profile Force balance → ODE (pressure, wall friction) (BC: v=0 at wall, dv/dx=0 at v=2 integrations → parabolic profile dp/dx is constant v_{avg} = ½ v_{max} (for circular pipes!) f defined, f = 64/Re 	CL)

Class 20—Pipe Networks	10
2 Key parameters: ΔP , \mathscr{V} Series Flow - $\Delta P_{tot} = \Sigma \Delta P_i$ - Constant \mathscr{V} Parallel Flow - $\mathscr{V}_{tot} = \Sigma \mathscr{V}_i'$ - $\Delta P_i = \Delta P_j = \Delta P_k$ For pipes between the same two nodes Type 1 (find ΔP) and 2 (find \mathscr{V}) problems considered A system demand curve can help conceptually (and computationally) Can also set up and solve system of nonlinear equations More complex networks are the sum of the parts - $\Sigma Q_j = 0$ at "nodes" (pipe junctions) - $\Sigma \Delta P_i = 0$ around loops. - Like Kirchoff's laws for current flow (but nonlinear)	

