

	Recap
• F • C	AP → f, Re, f = f(Re, ε/D) Relate, ΔP, L, D, v. Colbrook Eqn. gives f(Re, ε/D) - Implicit equation - Haaland is explicit - 3 problem types: ΔP, D, flow rate (v) · Swamee & Jain relations Note: 2 friction factors - Darcy (our book) - Fanning = ¼ Darcy Moody Diagram plots the Colbrook Equation - f drops with Re - Transition region in grey - Turbulent f >> laminar f - Curves flatten, become independent of Re at high Re (fully rough flow)

– L/D

BYU

- Open globe valve \rightarrow 400
- Open ball valve → 1.7
- Sharp contraction \rightarrow 16
- Smooth contraction $\rightarrow 1$
- Expansion → 33
- 90 deg. Smooth bend →10
- 90 deg. Sharp bend \rightarrow 36

As Re increases, f decreases, and L/D increases

