Chemical Engineering 374

Fluid Mechanics

Minor/Fitting Losses

A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering
--Freeman Dyson (theoretical physicist and mathematician).

Recap

- $\Delta P \rightarrow f, \operatorname{Re}, f=f(\operatorname{Re}, \varepsilon / D)$
- Relate, $\Delta \mathrm{P}, \mathrm{L}, \mathrm{D}, \mathrm{v}$.
- Colbrook Eqn. gives f(Re, $\varepsilon / D)$
- Implicit equation
- Haaland is explicit
- 3 problem types: ΔP, D, flow rate (v)
- Swamee \& Jain relations
- Note: 2 friction factors
- Darcy (our book)
- Fanning = $1 / 4$ Darcy
- Moody Diagram plots the Colbrook Equation
- fdrops with Re
- Transition region in grey
- Turbulent f >> laminar f
- Curves flatten, become independent of Re at high Re (fully rough flow)
- Write $\left(\frac{\Delta P}{\rho}+\frac{\Delta v^{2}}{2}+g \Delta z\right)=-F \quad F=\frac{f L v^{2}}{2 D}$
- SS, no Heat transfer, no Shaft work
- Mechanical losses due to friction
- Pipes
- Pipelines consist of more than just pipes
- Valves, fittings, bends, elbows, flow meters, expansions, etc.
- All cause losses
- Generally small (hence "minor" losses)
- Provided have long pipes and few fittings
- Two methods to account for losses
- Loss Coefficient: K_{L}
- Equivalent Pipe Length

Loss Coefficient

$$
\left(\frac{\Delta P}{\rho}+\frac{\Delta v^{2}}{2}+g \Delta z\right)=-F=-K \frac{v^{2}}{2}=-W_{L} \quad K=\frac{\Delta P_{L}}{\frac{1}{2} \rho v^{2}}
$$

$$
E_{L}=F=K \frac{v^{2}}{2}
$$

- 3 forms:
- Energy, pressure, head
$\Delta P_{L}=\rho F=K \frac{\rho v^{2}}{2}$
$h_{L}=\frac{F}{g}=K \frac{v^{2}}{2 g}$
- Constant times:
- Kinetic energy
- Dynamic pressure
- Velocity head
- Rewrite with pipe losses and minor losses

BYU

Energy: $-\mathbf{E}_{\mathrm{L}} \quad\left(\frac{\Delta P}{\rho}+\frac{\Delta v^{2}}{2}+g \Delta z\right)=-\frac{f L v^{2}}{2 D}-\frac{K v^{2}}{2}$
Pressure: $-\Delta \mathbf{P}_{\mathrm{L}}\left(\Delta P+\frac{\rho \Delta v^{2}}{2}+\rho g \Delta z\right)=-\frac{f L \rho v^{2}}{2 D}-\frac{K \rho v^{2}}{2}$
Head: $-\mathrm{h}_{\llcorner } \quad\left(\frac{\Delta P}{\rho g}+\frac{\Delta v^{2}}{2 g}+\Delta z\right)=-\frac{f L v^{2}}{2 D g}-\frac{K v^{2}}{2 g}$

Equivalent Length

- Head Loss Form.
- Compare pipe term $\frac{f L v^{2}}{2 g D}$ and fitting term $\frac{K v^{2}}{2 g}$
- Put the fittings loss in terms of the pipe loss
- Set equal, then $K=\frac{f L_{e q}}{D}$
- Or $\quad L_{e q}=\frac{D}{f} K$
- Given fitting K, solve for Leq and increase the pipe length by this amount.
- Note the definition of K:

BYU

- Don't subtract out the length of the valve

Losses

- Losses are due to complex flow path
- Swirling, turbulent eddies where stresses are higher than regular pipe flow.
- May persist downstream \rightarrow not just localized at the fitting
- Place flowmeters 10-20 D away to minimize fittings effects \& better agree with manufacturers calibrations
- Types of fittings/losses
- Expansions
- Contractions
- Bends
- Valves
- Determine Experimentally
- Use the velocity in the smaller of two pipe sections (e.g. expansions, contractions)

Expansions

- Consider pipe into a tank
- Without losses:
- v_{2} is small
- P_{2} increases, recovering KE drop as pressure rise
- Actually, all KE is converted to
 friction, as flow enteres and eddies around
- Then $P_{1}=P_{2}$
- Note α included (~1)
- $\mathrm{K}=\alpha$
- This is as bad as it gets.
- Expansion with finite area ratio:
$\mathrm{K}=\alpha\left(1-\mathrm{A}_{1} / \mathrm{A}_{2}\right)^{2}$
$A_{1}=A_{2} \rightarrow K=0 ; A_{2} \gg A_{1} \rightarrow K=\alpha$

Sudden expansion

Sudden expansion, Reynolds number $=3000$
http://www.bhrc.ac.ir/Profile/Heidarinejad/Images/expan.gif

Sudden Expansion

$$
\begin{array}{cc}
\text { P } & \text { KE } \\
\frac{P_{2}-P_{1}}{\rho} \\
\hline v_{1}^{2} \\
2 & \left.\frac{A_{1}^{2}}{A_{2}^{2}-1}\right)=-\frac{K_{L} v_{1}^{2}}{2}=-\frac{\alpha v_{1}^{2}}{2}\left(1-\frac{A_{1}}{A_{2}}\right)^{2}
\end{array}
$$

$>$ Vary the area ratio, $>$ Compare terms: -Pressure, -Kinetic Energy -Loss

Take
$\rho=1$,
$\mathrm{v}_{1}=1$,
$\mathrm{P}_{1}=0$,
$\mathrm{A}=1$

Contraction

- Sharp edges \rightarrow flow can' t make the turn and separates.
- Flow is squeezed through the "vena contracta"
- Recirculation \rightarrow losses.
- Rounding edges makes a big impact.
- Square $\rightarrow K=0.5$
- Round $\rightarrow K=0.03$ (r/D=0.2)
- Round $\rightarrow \mathrm{K}=0.12$ ($\mathrm{r} / \mathrm{D}=0.12$)
- Gradual expansion/contraction helps
- SEE TABLE 8.4 FOR MORE DETAILS

How important are the minor losses?

- Leq = KD/f \rightarrow L/D = K/f
- Take smooth pipe with $\operatorname{Re}=10,000 \rightarrow f=0.03$
- L/D
- Open globe valve $\rightarrow 400$
- Open ball valve $\rightarrow 1.7$
- Sharp contraction $\rightarrow 16$
- Smooth contraction $\rightarrow 1$
- Expansion $\quad \rightarrow 33$
- 90 deg. Smooth bend $\rightarrow 10$
- 90 deg. Sharp bend $\rightarrow 36$
- As Re increases, f decreases, and L/D increases

Quiz (not graded)

- Water flows from a reservoir, into a sharp-edged pipe ($\mathrm{K}_{\mathrm{L}}=0.5$), through a couple of $9 \mathbf{0}^{\circ}$ miter bends $\left(\mathrm{K}_{\mathrm{L}}=1.1\right)$ to a lower reservoir as shown in the figure. The difference in the levels of the reservoirs is $H=100 \mathrm{~m}$. The water flows through a pipe of length $L=\mathbf{2 0 0} \mathrm{m}$ and relative roughness $\mathrm{e} / \mathrm{D}=\mathbf{0 . 0 0 2}$. The velocity in the pipe is $\mathbf{v = 1 0} \mathbf{~ m} / \mathbf{s}$, giving a very high $\mathbf{R e}$. If the power generated by the turbine is $\mathrm{W}_{\mathrm{t}}=4,437,500 \mathrm{~J} / \mathrm{s}$. Find the required pipe diameter.

