ChE 374-Lecture 17-Turbulent Pipe Flows

- Recap
 - Pipes $\rightarrow 2 \Pi$'s: Re, f: f = f(Re).
 - Darcy friction factor: $f = \frac{2\Delta P_L D}{Lov^2}$.
 - For pipes: $\frac{\Delta P}{\rho} + g\Delta z = -\frac{fLv^2}{2D}$.
 - * Follows from the definition of f, and the friction/loss term in the mechanical energy equation. Can add on the work terms too.
- Turbulent Pipe flow
 - High Re, Chaotic, Unsteady, Random velocity, velocity fluctuations, 3D
 - Unsteady, and $3D \rightarrow$ steady and 1D when take average
 - $* u = \overline{u} + u'.$
 - Turbulent profile is flatter in the center and steeper near the walls than laminar.
 - * Higher τ_w , higher friction, higher pressure drop.
 - * Recall: laminar transports by diffusion (slow), turbulence transports by convection (fast): Re is ratio of convection rate to diffusion rate, and Re is high.
- Velocity Profile
 - Four regions: (1) inner/viscous sublayer; (2) buffer layer; (3) overlap/log-law; (4) Outer/turbulent.
 - Scale u and y using viscous scales: $u_{\tau} = \sqrt{\tau_w/\rho}, \, \delta = \nu/u_{\tau}.$
 - Dimensional analysis tells us the shape of profiles in regions 1, 3.
- Shear Stress
 - Need to account for fluctuations, which move the velocity, hence momentum (τ is a momentum flux, recall).
 - $-\tau_t = -\rho u / v /.$
 - * Units of stress (F/A)
 - * Called a Reynolds Stress
 - * Flux of u-momentum, due to v-fluctuations (u is streamwise, v toward wall).
 - Model with $\tau = \mu_t \frac{d\bar{u}}{du}$
 - * μ_t is the eddy viscosity, which is a Flow property, NOT a fluid property.
- Pipe Roughness
 - The very thin region of viscous effects in turbulent flow means pipe wall roughness is important.
 - Irregularities in the surface disturb the viscous layer \rightarrow more friction.
 - $-\epsilon$ is the roughness and ϵ/D is a new parameter.
 - $-f = f(Re, \epsilon/D).$
- Colbrook Equation / Moody Chart
 - Colbrook equation: $\frac{1}{\sqrt{f}} = -2.0 \log \left(\frac{\epsilon/D}{3/7} + \frac{2.51}{Re\sqrt{f}}\right).$
 - * Implicit in f; use solver, etc. to solve for f.
 - Haaland Equation: $\frac{1}{\sqrt{f}} = -1.8 \log \left(\frac{6.9}{Re} + \left(\frac{\epsilon/D}{3.7} \right)^1 .11 \right)$.
 - * Explicit in f, and accurate to within 2%.
 - Moody Diagram
 - * Be familiar with properties: laminar, transition, f(Re) dependence, f(ϵ) dependence, limiting cases of $\epsilon = 0$ and high Re,

Class 17 - Turbulant Pipe Flow

· Recap

. Turbulent Flow

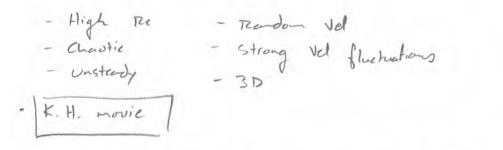
- Fluctuations

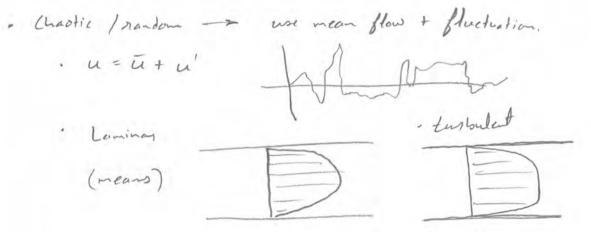
- Velocity profile

- shear stress

" friction Factor

· Recep: Dimensional Analysis of Tipe flow


·
$$\frac{\Delta P}{L}$$
, D, V, P, M \longrightarrow 2 Groups Re, $\frac{\Delta PD}{LPV^2}$


Group $\frac{\Delta P P}{L P V^2} = \frac{4 L_v}{P V^2}$; $\frac{P V^2}{2}$ instead $\rightarrow \frac{8 L_w}{P V_2} = f$

Now: Flow
$$\longrightarrow \Delta P \longrightarrow Power
Flow $\longrightarrow Re \longrightarrow f \longrightarrow \Delta P \longrightarrow Power
$$\frac{\Delta P}{P} = -\frac{fLV^2}{2D} \qquad h_L = -\frac{fLV^2}{2Dg}$$

$$iJ = in \frac{\Delta P}{P} = ingh_L$$$$$

Turbulent Tipe Flow

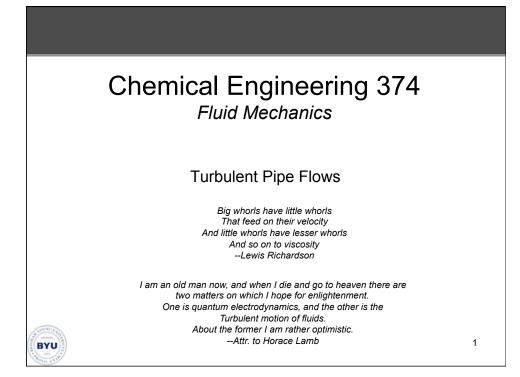
- · turb eddies Flatter profile, but still no slip at well -> Steeper at wall.
- higher Tw
 higher Friction
 higher AP₁₀₀₀
 Slide eddies Smaller near wall
 Movie ODT Eddies transport momentum they.

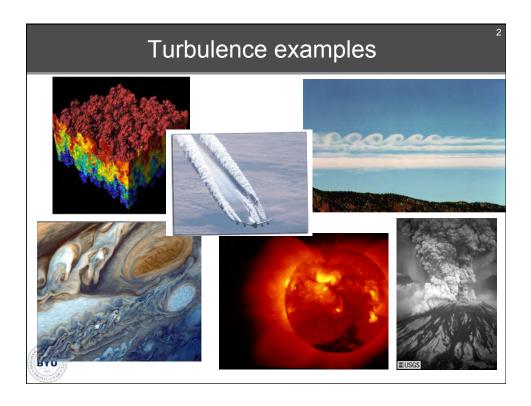
Laminar
$$\longrightarrow T = -\mu \frac{d\nu}{d\gamma}$$

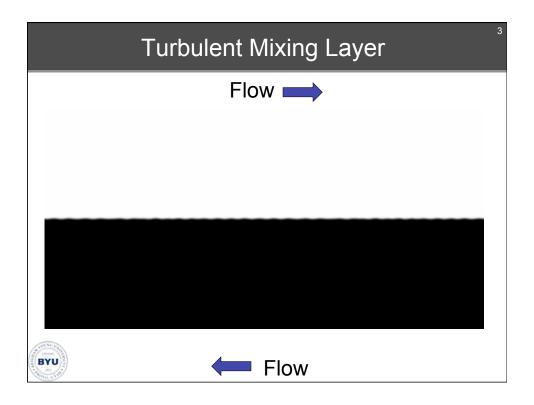
Turbulent $\longrightarrow T = -\mu \frac{d\tau}{d\gamma}$? \longrightarrow too low.
even though $\frac{d\tau}{d\gamma}$ is higher Than in Leming
- neglects The eddes

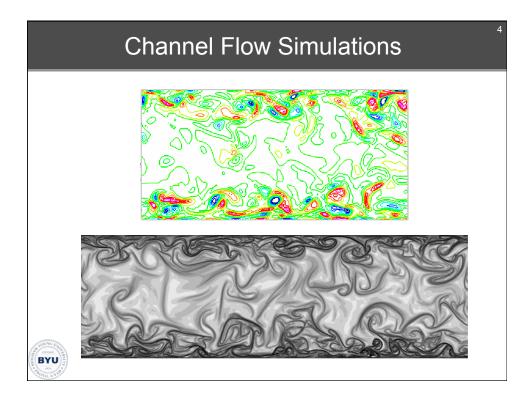
tusbulent edies transport momentum.

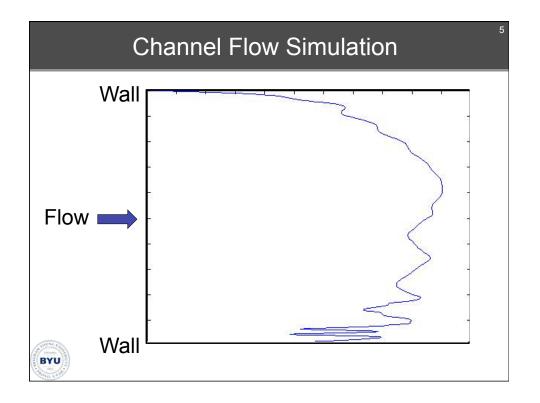
Collorook Equation / Moody chart.


- 2. Transition region


- 3. f Decreases with Re 4. f increases with E/D 5. f levels off with Re
- 6. Limiting Cases, E=0, Re- a)


3. f Drops with Re, but friction Does not


$$\frac{\Delta P}{P} = \frac{fLV^2}{20}; \quad Re \propto V; \quad as Ret, V^2 \uparrow for teg than
f Decreases.
5 -> Svise $K \in -> \in roughness Dominates effect of Viscons
Sublayer -> indep. of Re, Shich increases tunb, but
viscosity is at the well$$$


I Eqn, I unknown
$$\frac{\Delta P}{P} = \frac{fLV}{2D}$$

Problem Types
 $\frac{\partial P}{\partial Find} \Delta P$ diven D, L, V
 $\frac{eosy}{2}$: D, V $\rightarrow Re \rightarrow f \rightarrow \Delta P$
 $\frac{\partial P}{\partial Find} \overline{V}$ diven D, L, ΔP
 $\frac{\partial P}{\partial Find} \overline{V}$ diven D, L, ΔP
 $\frac{\partial P}{\partial Find} \overline{V}$ diven V $\rightarrow Re, \rightarrow f \rightarrow \Theta$ Repeat
 $\frac{\partial P}{\partial Find} \overline{V}$ Given L, ΔP , V
handest : Guess D $\rightarrow Re \rightarrow f \rightarrow \Theta$ repeat

