Problem

Use Excel to solve the following two equations for x and y :

$$
\begin{aligned}
2 x^{1 / 3}+y^{2} & =7.8322 \\
\ln (x)+y^{2} / 4 & =2.4032
\end{aligned}
$$

Problem

Use Excel to solve the following equation for x using Newton's method. Use an initial guess of $x=1$.

$$
3 x^{2} e^{-x}=1
$$

Problem

Data for $r(1 / s)$ versus $T\left({ }^{\circ} \mathrm{C}\right)$ are given.

- Find values for k and E for the following model using a trend line:

$$
r=k e^{-E /(T+273.15)}
$$

- Show the plot you use, including the trend line. Use symbols (not lines) for the data. Include x and y axes titles. Increase all font sizes to 14 pt .
- Show the trend line equation and R^{2} value on the plot.

Problem

When fluid flows near a wall, a boundary layer develops. The velocity profile, u, is zero at the wall, and transitions to the free-stream velocity far away from the wall. Three rate equations describe the flow:

$$
\begin{aligned}
& \frac{d k}{d x}=-\frac{1}{2} g k \\
& \frac{d g}{d x}=u \\
& \frac{d u}{d x}=k
\end{aligned}
$$

Here, x is distance from the wall instead of time. The "initial" ($\mathrm{x}=0$ or wall) values for u and g are 0 , that is $u_{0}=0, g_{0}=0$. The initial value for k is unknown, so we will guess it's value to be $k_{0}=0.1$, then once we have solved the rate equations, we'll vary k_{0} to get a known value of $u=1$ at $x=10$.

- Use the Explicit Euler method to solve these coupled rate equations from $x=0$ to $x=10$ with $\mathrm{dx}=0.1$, using $\mathrm{u}_{0}=0, \mathrm{~g}_{0}=0, \mathrm{k}_{0}=0.1$.
- Use Excel to get k_{0} so that $\mathrm{u}(10)=1$. Report k_{0}.
- Plot $u(x)$ with a line and label the axes.

