Study Exercise

* Make a list of all python functions/variables/code we have seen.

* Consider the items in the list:
 What is the basic idea?
 What further details?
* What are some “gotchas” or caveats?

Study Excercise

* Write down the main topic/title of each class
* Try without the schedule, then with it

* For each class, what were the main ideas
e Outline each class.
e Putin details
 What examples were done?

* Do this alone, then with others.
* Create your own review notes (like these slides).

I”

* First “recall” then look up to fill in.

Study Exercise

* Go back through the homework.

* Read the problem statements and think through the problems
* What functions are needed?
* What is the approach used?
 What will the code look like

e Qutline the the solution

* Don’t spend too much time trying to rework problems, but get the
essense of the problem and try to do it from memory.

» Afterward, look at the homework solution provided and compare
your approach.

Study Exercise

* Write out simple examples of code features and how/why we used
them.
* Loops
* Functions
* Conditionals
* Variables
* Etc.

* Do the same for key numerical tools considered.

* “Play professor,” what would you put on the exam? Try inventing your
own problems.

Class 24: Rate Equations

* from scipy.integrate import odeint
— = fly,t) ¥(0)=1wo

* f(y,t) is the “right hand side function” or the rate function.

Rate equations — " « f(yt) depends ony and t in general, but the actual expression often
doesn’t include t.

Symbolic math

* For multiple equations y is a vector of “variables”, f is a vector of

Widgets functions

Python-Excel interface * Solve for y(t). Solution will be an array of t and an array of y

dv

dy a 8
E - _2y + 3 dx _ v
dt
¥(0) = 1 »0) = x(0) = 0
def f(vx,t):
def f(y,t): v = vx[0]
return -2xy + 3 x = vx[1]
dvdt = 9.81
dxdt = v
y0 = 1 return np.array([dvdt, dxdt])
t = np.linspace(0,5,100) <8 = np.array([0, 01)
y = Odeint(f' y0, t) t = np.linspace(é,S,l@O)

y = odeint(f, xy@, t)

Class 25: Symbolic Math

Rate equations

Symbolic math E—

Widgets

Python-Excel interface

X,yY,2 = sp.symbols('x, y, z") # set symbols

ex = x**2 + y**2 + 2z # create an expression
display(ex) #

ex2 = ex.subs(y+1l,Xx) # substitute y+1 for x
ex3 = ex.subs([(y+1,x), (2, 7)]1) # multiple substitution
ex.evalf(subs={x:3, y:4, z:sp.pi}) # numerical evaluation
ex.evalf (100, subs={x:3, y:4, z:sp.pi}) # 100 digits of accuracy

ex = (X**2 + 3*x + 2)/(x+1)

ex.simplify() # simplify: three versions
sp.simplify(ex)

sp.simplify((x**2 + 3*x + 2)/(x+1l))

ex = (x+2)*(x-3) # expand : three versions

ex.expand()
sp.expand(ex)
sp.expand((x+2)*(x-3))

ex = X**3 - x**%2 + x - 1
ex.factor()

sp.factor(ex)

sp.factor(x**3 - x**2 + x -1)

collect, cancel, apart, trigsimp, expand trig, powsimp
expand power_exp, expand power_ base, pow_denest, expand log, etc.

ex = sp.exp(x*y*z)
ex.diff(x) # differentiate: three versions
sp.diff(ex,x)
sp.diff(sp.exp(x**2), x)
sp.diff(ex, x,x,Xx)
ex.diff(x,y,z)

3rd derivative
3rd mixed derivative

display expression (better than print)

exD
exD

ex
ex.
sp.
sp
sp.
sSp

exI
exI
exI

ex
exL
exL
exL

sp.
ex

sp.
sp
sp

£
£

import sympy as sp
sp.init_printing()
from IPython.display import display

= sp.Derivative(ex, x,y,z) # expression with derivative

.doit()

= X*%2 + y**2
integrate(x)
integrate(ex, Xx)

.integrate(x**2, x)
integrate(ex, (x,0,sp.00))
.integrate(ex, (x,1,2), (y, 0, 2))

= sp.Integral(ex,
= sp.Integral(ex,
.doit()

= sp.sin(x)/x

= sp.limit(ex, x,
= sp.Limit(ex, x,
.doit()

solve(x**2-y, X)

= sp.Eq(x**2, y)
solve(ex, X)

.solve((x-y+2, x+ty-3), (%, y)) #
.solve((x*y-7, xty-6), (X, y)) # nonlinear: try replace 6 with z
#

sp.Function('f")

evaluate the derivative expression

integrate: three versions

(note, the constant is left off)

definite integral

double integral
X) # expression with integral
(x,0,2)) # include bounds

evaluate the integral expression
0) # limit
0) # expression with limit

evaluate the limit expression

solve

create an equality: x**2 =y

solve system of equations

function variable: 2 ways

sp.symbols('f', cls=sp.Function)

diffEq = f(x).diff(x,x) - 2*f(x).diff(x) + £(x) - sp.sin(x)

sp.dsolve(diffEq, f(x))

mll
b1,
A=
b =
A.i
A**

, ml2, m2l1, m22 =
b2 =
sp.Matrix([[mll,
sp.Matrix([bl,b2]

nv()*b

-1 *Db

solve ODE for f(x)

sp.symbols("mll, ml2, m21l, m22")
sp.symbols("bl, b2")

ml2], [m2l1l, m22]])

)

symbols
Function

subs
evalf
simplify

expand
factor

diff
integrate
limit
Derivative
Integral
Limit

doit

solve
dsolve

Matrix
row
row_del
inv

Rate equations
Symbolic math
Widgets

Python-Excel interface

import ipywidgets as wgt
import numpy as np

import matplotlib.pyplot as plt
$matplotlib inline

def f(a,b,c):
X = np.linspace(0,10,1000)
y = np.cos(a*x + b) + ¢
plt.plot(x,y)
plt.ylim([-3,3])
plt.show()

wgt.interact(f, a=(-5,5), b=(-5,5), c=(-6,6));

a 1
b 0
c -1
3
2
1
0
-1
-2
-3 T T T r T

Class 26: Widgets

import ipywidgets as wg
from IPython.display import display
import numpy as np

Title = wg.HTML(value="
Enter properties:")
display(Title)

He e

tab = wg.Label('', layout=wg.Layout (width='3%"))
L0 = wg.Label('Some quantity:', layout=wg.Layout(width='30%"))
R0 = wg.Text(value='100", layout=wg.Layout (width='20%"))

box0 = wg.HBox([tab, LO, RO])
display(box0)

Hmm

Ll = wg.Label('Some radio buttons:', layout=wg.Layout (width='30%"))
Rl = wg.RadioButtons(options=['dog', 'cat', 'pig', 'cow', 'snake'], value='dog',
layout=wg.Layout (width='20%"))

boxl = wg.HBox([tab, L1, R1l])
display(boxl)

L2 = wg.Label('Dropdown box:', layout=wg.Layout(width='30%"'))

R2 wg.Dropdown (options=['BYU','USU', 'Utah','UVU'], value='BYU',
layout=wg.Layout (width='30%"),
description='"', button_style='")

box2 = wg.HBox([tab, L2, R2])
display (box2)

B
submitButton = wg.Button(description='Submit and Run', button_style='success')
display(submitButton)

def buttonClicked(sbutton):

res0.value = "The value of RO is " + str(RO.value)
resl.value "The value of Rl is " + str(Rl.value)
res2.value = "The value of R2 is " + str(R2.value)

submitButton.on_click(buttonClicked)
Fm e

Results = wg.HTML(value="
Results:")
display(Results)

res0 = wg.Label(layout=wg.Layout(width='25%"))
resl = wg.Label(layout=wg.Layout(width='25%"))
res2 = wg.Label(layout=wg.Layout(width='25%"))

display(res0, resl, res2)

Enter properties:
Some quantity:

Some radio buttons:

Dropdown box:

Submit and Run

Results:

100

© dog
cat
pig

shake

BYU

Class 27: Excel Interface: xlwings

Rate equations

- open
Symbolic math wb = xw.Book('data.xlsx')
sht = wb.sheets['Sheetl']
Widgets
e put/get variables
Python-Excel interface —_— varl = 2.20462
sht.range('A6').value = varl
var2 = sht.range('A7').value
e Excel macros S —————— put/get arrays
t = sht.range('E2:E10"').value
* Name t = sht.range('E2:E10').options(np.array).value
* Keyboard shortcut t = sht.range('E2').expand('vertical').value

* Relative references
sht.range('F2').value = t[:, np.newaxis]

* Can edit code in vba; can use to see code corresponding to operation

] #———— formula
* Enable Developer: sht.range('H2').formula = "=sum(F:F)"
* Windows: File = options = Ribbon - Developer
#————— sheets

* Mac: Excel = Preferences = Ribbon - Developer wb. sheets.add("new sheet", after="sheet 1")

* Interact with Excel from Python AT 2 ST

. #—————— save/close
* Interact with Python from Excel wb. save()
* Setup: run terminal commands: xlwings runtime install, xlwings addin install wb.close()

* Set the PYTHONPATH nad the python command location in the xlwings tab in Excel
* Interminal: xlwings quickstart project_name

* Creates folder project_name with files project_name.py and project_name.xlsm

Debugging

Key types of bugs (among many):

e syntax errors
= |mproper python
= Missing ":" or indentation, or spelling, or invalid expressions.
= Usually easily found. Python will tell you about them.
= Often parentheses issues.
¢ runtime errors
= An error that occurs when you run the code.
= Divide by zero, or an improper value.
¢ logical errors
= You coded it wrong.
= But the computer doesn't know that. It tries to solve the problem.
= You might get an answer but it might be wrong.
= You might not get an answer. Like fsolve cannot converge...

Others

Exceeding array bounds, or not being careful about indexing.

Using * instead of **

Using 6.02*10**23 instead of 6.02E23 (more of a computational sin than a bug).

Using conflicting names; like using £ for both a function and a variable.

Passing a function call as an argument instead of passing the function itself as the argument:
= Like using this: I = quad(f(x), a, b)[0]
= instead of this: I = quad(f, a, b)[0]

The I Rule

¢ "However long you think it should take, multiply by I."
e Bugs are the reason for the I rule!
e Time t spend being careful and avoiding bugs saves you It debugging!

