Exercise

- Make a list of all python functions/variables/code we have seen.
- Discuss the items in the list:
 - What is the basic idea?
 - What further details?
 - What are some "gotchas" or caveats?

Excercise

- Write down the main topic/title of the last five classes on Python
- For each class, what were the main ideas
 - Outline each class.
 - Put in details
 - What examples were done?
- Do this alone, then with your neighbor.
- Create your own review notes (like these slides).
 - First "recall" then look up to fill in.

Class 20: Examples, nonlinear solvers

- Discussed Newton Fractal
- Discussed turbulent problem: coupling nonlinear solve
- Discussed homework
 - Adiabatic flame temperature solution
- Approaches for solving systems of equations
 - Use intermediate variables
 - Re = rDv/m normally doesn't need to be a separate equation/variable
 - Often, the solution in Python can be written as it appears in text
 - Carefully consider how many equations/variables you really need.
 - Trivial equations can be used directly: like $x_1 + x_2 = 1 \rightarrow x_2 = (1-x_1)$
 - In such cases, final values can be recovered after solution.
 - Functions can be defined inside functions if convenient
 - Can mix solution approaches: quad, interp1d, etc.

Solving nonlinear equations

Args/tuple expansion, nonlinear HW, examples

Interpolation

Curve fitting

Class 21: Interpolation

Solving nonlinear equations

Args/tuple expansion, nonlinear HW, examples

Interpolation

Curve fitting

- Given a list of xg, yg points.
- Find values of y at intermediate x
- Linear interpolation exercise
 - Pass in xg, yg, xw \rightarrow find yw
 - Find location (two bounding points).
 - Form and evaluate equation for line between two points.
- Python interpolator

```
from scipy.interpolate import interpld
xg = np.array([0,1,2,3,4,5,6,7,8,9,10])
yg = np.cos(xg**2.0/8.0)+1
f_interp = interpld(xg, yg)
xw = 2.5
yw = f_interp(xw)
```

Class 22: Curve Fitting

 Solving nonlinear equations

 Args/tuple expansion, nonlinear HW, examples

 Interpolation

 Curve fitting

- Given a list of xg, yg points.
- Given a model function with unknown parameters
- Find the parameters
- polyfit, polyval functions

```
import numpy as np
xg = np.array([0., 1., 2., 3., 4., 5.])
yg = np.array([0, 0.8, 0.9, 0.1, -0.8, -1.0])
p3 = np.polyfit(xg, yg, 3)
xw = np.linspace(0,5,1000)
yw = np.polyval(p3, xw)
```

Class 22: Curve Fitting

- Given a list of xg, yg points.
- Given a model function with unknown parameters
- Find the parameters
- curve_fit function

```
import numpy as np
from scipy.optimize import curve fit
#----- given data
xg = np.linspace(0, 4, 50)
yg = 2.5 \times np.exp(-1.3 \times xg) + 0.5 + 0.2 \times np.random.normal(size=len(xg))
#----- Define the function with parameters: x comes first
def f(x, a, b, c):
    return a*np.exp(-b*x) + c
#----- Do the curve fit
abc, extras = curve_fit(f, xg, yg)
a = abc[0]
b = abc[1]
c = abc[2]
xx = xq
yy = f(xx,a,b,c)
```

Solving nonlinear equations

Args/tuple expansion, nonlinear HW, examples

Interpolation

Curve fitting

Class 23: Rate Equations

• from scipy.integrate import odeint

$$\frac{dy}{dt} = f(y,t) \qquad y(0) = y_0$$

- f(y,t) is the "right hand side function" or the rate function.
- f(y,t) depends on y and t in general, but the actual expression often doesn't include t.
- For multiple equations y is a vector of "variables", f is a vector of ٠ functions
- Solve for y(t). Solution will be an array of t and an array of y

$\frac{dy}{dt} = -2y + 3$ $y(0) = 1$	$\frac{dv}{dt} = g$ $\frac{dx}{dt} = v$ $y(0) = x(0) = 0$
<pre>def f(y,t): return -2*y + 3 y0 = 1 t = np.linspace(0,5,100) y = odeint(f, y0, t)</pre>	<pre>def f(vx,t): v = vx[0] x = vx[1] dvdt = 9.81 dxdt = v return np.array([dvdt, dxdt]) xy0 = np.array([0, 0]) t = np.linspace(0,5,100) y = odeint(f, xy0, t)</pre>

Rate equations

Symbolic math

Widgets

Python-Excel interface