## Solving Basic Rate Equations

- Rate Equations = Ordinary Differential Equations (ODEs)
- You will take a class on solving these analytically
- Here will learn basic techniques for solving them numerically
- Basic form

$$
\frac{d y}{d t}=f(y, t)
$$

- $d y / d t=y^{\prime}$
- We are given the "slope" $y^{\prime}=f(y, t)$.

This is NOT a solver problem.
$y(t)$ is an unknown function, not a value.
We want $y(t)$ at all points $t$.
We are given $y^{\prime}(y, t)$, the slope.

- We want to find the function $\mathrm{y}(\mathrm{t})$.


## Initial Condition

- Conceptually, we can solve this by integrating.
- There is a constant of integration.
- We evaluate the constant by specifying an initial condition: $y(0)=y_{0}$
- Recall, adding any constant to y doesn't change the rate equation

$$
\frac{d(y+c)}{d t}=\frac{d y}{d t}+\frac{d q}{p t}=\frac{d y}{d t}=f(y, t)
$$

2 Things: rate function $f(y, t)$, and an initial condition

$$
\begin{aligned}
& \frac{d y}{d t}=f(y, t) \\
& y(0)=y_{0}
\end{aligned}
$$

## Example

- $F=m a$
- (Rate of change of momentum) = (sum of external forces)

$$
\frac{d(m v)}{d t}=m g
$$

- For constant mass, we have

$$
\begin{equation*}
\frac{d(v)}{d t}=g \tag{t}
\end{equation*}
$$

$$
v(t)=g t+v_{0}
$$

- Initial condition

$$
v(0)=v_{0}
$$

## Explicit Euler Method

- Don't solve analytically, solve numerically
- Solve only at discrete points $t_{i}$
- Approximate the slope

$$
\begin{aligned}
& \frac{d y}{d t}=f(y, t) \\
& \frac{\Delta y}{\Delta t}=f(y, t) \\
& \frac{y_{i+1}-y_{i}}{\Delta t}=f\left(y_{i}, t_{i}\right) \quad \longrightarrow \quad y_{i+1}=y_{i}+\Delta t f\left(y_{i}, t_{i}\right)
\end{aligned}
$$

| Start $\mathrm{i}=0, \mathrm{y}=\mathrm{y}_{0}$ | $y_{1}=y_{0}+\Delta t f\left(y_{0}, t_{0}\right)$ | Step from $\mathrm{i}=0$, to $\mathrm{i}=1$ |
| :---: | :--- | :--- |
| $t_{i}=i \Delta t$ | $y_{2}=y_{1}+\Delta t f\left(y_{1}, t_{1}\right)$ | Step from $\mathrm{i}=1$, to $\mathrm{i}=2$ |
|  | $\ldots$ |  |
|  | $y_{i+1}=y_{i}+\Delta t f\left(y_{i}, t_{i}\right)$ | Step from i, to $\mathrm{i}+1$, etc. |

## Example

- Nuclear decay.

$$
\frac{d c}{d t}=-k c
$$

- The rate of loss is proportional to the amount.
- Here, $f(c, t)=-k c$

$$
c(0)=c_{0}
$$

- We include the " t " dependence in writing the function, but in many cases " t " does not explicitly appear in the formula.
- Explicit Euler equation $\quad y_{i+1}=y_{i}+\Delta t f\left(y_{i}, t_{i}\right)$

$$
c_{i+1}=c_{i}+\Delta t \cdot\left(-k c_{i}\right)
$$



- Solve in Excel...


## Excel...

## 2 Rate Equations?

$$
\begin{aligned}
& y_{i+1}=y_{i}+\Delta t f\left(y_{i}, z_{i}, t_{i}\right) \\
& z_{i+1}=z_{i}+\Delta t g\left(y_{i}, z_{i}, t_{i}\right)
\end{aligned}
$$

Both $y$, and $z$ are written in terms of the previous point

$$
\begin{aligned}
& \frac{d y}{d t}=f(y, z, t) \\
& \frac{d z}{d t}=g(y, z, t)
\end{aligned}
$$

Example: falling raindrop with air resistance

$$
\begin{aligned}
& \frac{d v}{d t}=g-c v^{2} \\
& \frac{d x}{d t}=v
\end{aligned} \quad \Longleftrightarrow \quad \begin{aligned}
& v_{i+1}=v_{i}+\Delta t\left(g-c v_{i}^{2}\right) \\
& x_{i+1}=x_{i}+\Delta t\left(v_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y(0)=y_{0} \\
& z(0)=z_{0}
\end{aligned}
$$

