Take the Learning Suite Quiz

Unit conversion

2.20462 lbm/kg

Linear Equations

- Linear equations
- m and b are constant

$$
f(x)=m x+b
$$

- Additive terms involving x are linear in x.
- Question: how do you solve this for some given $f(x)$, say $f(x)=1$, solve for x ?

$$
f(x)=m(x) x+b(x)
$$

- What about this?
- Two equations in two unknowns

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=a_{1} x_{1}+b_{1} x_{2}+c_{1} \\
& f_{2}\left(x_{1}, x_{2}\right)=a_{2} x_{1}+b_{2} x_{2}+c_{2}
\end{aligned}
$$

Nonlinear Equations

- Additive terms involving x are not linear in x

$$
f(x)=x^{3}-10(x-1)^{2}+1
$$

- Two equations in two unknowns

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+3 x_{1}+2 \\
& f_{2}\left(x_{1}, x_{2}\right)=2 x_{1}+3
\end{aligned}
$$

- Question: how do you solve the first equation for some given $f(x)$, say $f(x)=1$, solve for x ?
- Solve analytically (if possible),
- Plot the function
- Guess and check
- Others?

Note

- By convention, we put all nonlinear equations in the form $f(x)=0$ before solving.

$$
x^{3}=10(x-1)^{2}+1
$$

$$
x^{3}-10(x-1)^{2}-1=0
$$

Or this

$$
f(x)=x^{3}-10(x-1)^{2}-1=0
$$

Newton's Method

$$
f(x)=0
$$

- If you can't solve your problem, solve and easier problem
- Guess the answer.
- Assume the function is linear about your guess.
- Solve the linear approximation to get a better guess.
- Repeat.

Newton's Method

- Equation for the line

$$
f_{l}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- Solve for $f_{l}(x)=0$

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

