Homework 4

Download "hw_04.xlsx" to do your assignment.

1. Fit the data in "problem 1 " on the worksheet to a fourth order polynomial using a trendline. Show the equation in scientific notation with 2 decimals. Also display the R^{2} value on the plot.
2. Use a trendline to find the values of A and E in the rate equation $r=A * \exp (-E / T)$, where r and T data are given on worksheet "problem 2." You will need to modify this equation to get it in a form suitable for use with one of the built-in trendline forms.
3. The worksheet "Problem 3" contains data for the response of a first order system with time delay. Such data is used to create control devices to keep operations running correctly. (You will learn about this in ChEn 436, Process Control and Dynamics.)
a. Find the constants, τ and θ, in the equation

$$
y(t)=5\left[1-\exp \left(-\frac{(t-\theta)}{\tau}\right)\right] S(t-\theta)
$$

where

$$
S(t-\theta)=\left\{\begin{array}{ll}
0 & \text { when } t<\theta \\
1 & \text { when } t \geq \theta
\end{array}\right\}
$$

best fit the process control data, $\mathrm{y}(\mathrm{t})$.
b. Make a plot showing the data (as points) and the fit (as a line).
c. Which of the functions available with Excel's trendline feature best fit the data? How many constants are used to achieve this fit? What is its R^{2}-value?

Hints:

- You will need to use an if function for this problem.

